Skip to main content

Formal Kinematic Analysis of the Two-Link Planar Manipulator

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8144))

Included in the following conference series:

Abstract

Kinematic analysis is used for trajectory planning of robotic manipulators and is an integral step of their design. The main idea behind kinematic analysis is to study the motion of the robot based on the geometrical relationship of the robotic links and their joints. Given the continuous nature of kinematic analysis, traditional computer-based verification methods, such as simulation, numerical methods or model checking, fail to provide reliable results. This fact makes robotic designs error prone, which may lead to disastrous consequences given the safety-critical nature of robotic applications. Leveraging upon the high expressiveness of higher-order logic, we propose to use higher-order-logic theorem proving for conducting formal kinematic analysis. As a first step towards this direction, we utilize the geometry theory of HOL-Light to develop formal reasoning support for the kinematic analysis of a two-link planar manipulator, which forms the basis for many mechanical structures in robotics. To illustrate the usefulness of our foundational formalization, we present the formal kinematic analysis of a biped walking robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, J., Dean, E., Mumma, J.: A Formal System for Euclid’s Elements. Review of Symbolic Logic 2(4), 700–768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Becker, B., Cardelli, L., Hermanns, H., Tahar, S.: Abstracts collection. In: Verification over Discrete-Continuous Boundaries. Dagstuhl Seminar Proceedings, vol. 10271. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)

    Google Scholar 

  3. Binyameen, M.: Formal Kinematic Analysis of the Two-Link Planar Manipulator using HOL-Light (2013), http://save.seecs.nust.edu.pk/students/binyameen/tlpm.html

  4. Chivarov, N., Galabov, V.: Kinematics of Scara Robots. In: Problems of Engineering Cybernetics and Robotics, pp. 51–59 (2008)

    Google Scholar 

  5. Denavit, J., Hartenberg, R.S.: A Kinematic Notation for Lower-Pair Mechanisms based on Matrices. Trans. ASME Journal of Applied Mechanics 23, 215–221 (1955)

    MathSciNet  Google Scholar 

  6. Esposito, J.M., Moonzoo, K.: Using Formal Modeling with an Automated Analysis Tool to Design and Parametrically Analyze a Multirobot Coordination Protocol: A Case Study. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 37(3), 285–297 (2007)

    Article  Google Scholar 

  7. Fryziel, L., Fried, G., Djouani, K., Iqbal, S., Amirat, Y.: A Kinematic Analysis for a Hybrid Continuum Active Catheter. In: Proceedings of the 7th France-Japon Congress 5th Europe-Asia Congress on Mechatronics (MECHATRONICS 2008), Le Grand Bornand, France (2008)

    Google Scholar 

  8. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Requirements for Safe Robots: Measurements, Analysis and New Insights. International Journal of Robotics Research 28(11-12), 1507–1527 (2009)

    Article  Google Scholar 

  9. Harrison, J.: The HOL Light Theory of Euclidean Space. Automated Reasoning 50(2), 173–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hurmuzlu, Y., Ganot, F., Brogliato, B.: Modeling, Stability and Control of Biped Robots: general framework. Automatica 10 (2004)

    Google Scholar 

  11. Iqbal, S., Mohammed, S., Amirat, Y.: A Guaranteed Approach for Kinematic Analysis of Continuum Robot Based Catheter. In: Robotics and Biomimetics, pp. 1573–1578 (2009)

    Google Scholar 

  12. Lum, H.K., Zirbi, M., Soh, Y.C.: Planning and Control of a Biped Robot. International Journal of Engineering Science 37, 1319–1349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Merlet, J.P.: A Formal Numerical Approach for Robust In-Workspace Singularity Detection. IEEE Transactions on Robotics 23, 393–402 (2007)

    Article  Google Scholar 

  14. Myszka, D.: Machines and Mechanisms: Applied Kinematic Analysis, 4th edn. Prentice Hall (2011)

    Google Scholar 

  15. Petrovic, D., Maric, F.: Formalizing Analytic Geometries. In: Automated Deduction in Geometry (2012)

    Google Scholar 

  16. Pham, T.-M., Bertot, Y., Narboux, J.: A Coq-based Library for Interactive and Automated Theorem Proving in Plane Geometry. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part IV. LNCS, vol. 6785, pp. 368–383. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Proetzsch, M., Berns, K., Schuele, T., Schneider, K.: Formal Verification of Safety Behaviours of the Outdoor Robot RAVON. In: Informatics in Control, Automation and Robotics, pp. 157–164 (2007)

    Google Scholar 

  18. Ras, J., Cheng, A.M.K.: On Formal Verification of Toyota’s Electronic Throttle Controller. In: Systems Conference, SysCon (2011)

    Google Scholar 

  19. Shores, B.E., Minor, M.A.: Design, Kinematic Analysis, and Quasi-steady Control of a Morphic Rolling Disk Biped Climbing Robot. In: Robotics and Automation, pp. 2721–2726 (2005)

    Google Scholar 

  20. Sloth, C.: Formal Verification of Continuous Systems. PhD thesis, Aalborg University (2013)

    Google Scholar 

  21. Sloth, C., Wisniewski, R.: Abstractions for Mechanical Systems. IFAC Workshop Series, pp. 96–101 (2012)

    Google Scholar 

  22. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, 1st edn. Wiley (2005)

    Google Scholar 

  23. Walter, D., Täubig, H., Lüth, C.: Experiences in applying Formal Verification in Robotics. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 347–360. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Wang, Y., Chirikjian, G.S.: Propagation of Errors in Hybrid Manipulators. In: International Conference on Robotics and Automation, pp. 1848–1853 (2006)

    Google Scholar 

  25. Wolfram Research. Mathematica Mechanical Systems: Kinematic and Dynamic Analysis in Mathematica, 3rd edn. (2005), http://www.wolfram.com

  26. Yoshikawa, T.: Manipulability of Robotic Mechanisms. The International Journal of Robotics Research 4(2), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farooq, B., Hasan, O., Iqbal, S. (2013). Formal Kinematic Analysis of the Two-Link Planar Manipulator. In: Groves, L., Sun, J. (eds) Formal Methods and Software Engineering. ICFEM 2013. Lecture Notes in Computer Science, vol 8144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41202-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41202-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41201-1

  • Online ISBN: 978-3-642-41202-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics