Skip to main content

Multi-granular Computing in Web Age

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8170))

Abstract

In web age, the traditional information processing faces a new challenge. Due to the change of man-machine interaction modes, computers have to know the intention or interest of users. So computer information processing has to use the human brain processing principle for reference. One of its key principles is the multi-granular computing. In the talk, we will discuss the problem both from artificial intelligence and traditional information processing viewpoints. And we show that the new trend of information processing is to combine these two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serre, T., Oliva, A., Poggio, T.: A feed-forward architecture accounts for rapid categorization. Proc. of the National Academy of Sciences (PNAS) 104(15), 6424–6429 (2007)

    Article  Google Scholar 

  2. Yao, J., Vasilakos, A.V., Pedryez, W.: Granular computing: perspectives and challenges. will appears in IEEE Trans. on Cybernetics (2012)

    Google Scholar 

  3. Zhang, B., Zhang, L.: Theory and Application of Problem Solving. North-Holland Elsevier Science Publishers B.V. (1992)

    Google Scholar 

  4. Hobbs, J.R.: Granularity. In: Proc. of IJCAI, Los, Angeles, USA, pp. 432–435 (1985)

    Google Scholar 

  5. Olshausen, B.: Emergence of simple-sell receptive properties by learning a sparse code for natural image. Nature (1996)

    Google Scholar 

  6. Benjio, Y., Lamblin, P., Popovici, D., Larochelle: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems (NIPS 2006), vol. 19, pp. 153–160. MIT Press (2007)

    Google Scholar 

  7. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Communication 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Le, Q.V., et al.: Building high level feature using large scale unsupervised learning. In: Proc. 29th ICML, Edinburgh, Scotland, UK (2012)

    Google Scholar 

  9. Hu, X., Qi, P., Zhang, B.: Hierarchical K-means algorithm for modeling visual area V2 neurons. In: 19th International Conference on Neural Information Processing, Doha, Qatar, November 12-15 (2012)

    Google Scholar 

  10. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. The Annals of Mathematical Statistics 37(6), 1554–1563 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lafferty, J., et al.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proc. of International Conference on Machine Learning, ICML (2001)

    Google Scholar 

  12. Taskar, B., et al.: Max-margin Markov networks. In: Advances in Neural Information Processing Systems (INIPS) (2003)

    Google Scholar 

  13. Zhu, J., Xing, E., Zhang, B.: Laplace maximum margin Markov networks. In: Proc. of International Conference on Machine Learning (ICML) (2008)

    Google Scholar 

  14. Tenenbaum, J.E., et al.: How to grow a mind. Science 331(6022), 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, M., Zhu, J., Zhang, B.: Bayesian non-parameter max-margin matrix factorization for collaborative prediction. In: Advances in Neural Information Processing Systems, NIPS (2012)

    Google Scholar 

  16. Zhu, J., Chen, N., Perkins, H., Zhang, B.: Gibbs max-margin supervised topic models with fast ampling algorithms. In: ICML (2013)

    Google Scholar 

  17. Xu, M., Zhu, J., Zhang, B.: Fast max-margin matrix factorization with data augmentation. In: ICML (2013)

    Google Scholar 

  18. Zhu, J., Zheng, X., Zhou, L., Zhang, B.: Scalable inference in max-margin topic models. In: SIGKDD (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, B., Zhang, L. (2013). Multi-granular Computing in Web Age. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2013. Lecture Notes in Computer Science(), vol 8170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41218-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41218-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41217-2

  • Online ISBN: 978-3-642-41218-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics