Abstract
We have investigated rough set-based concepts for a given Non-deterministic Information System (NIS). In this paper, we consider generating a NIS from a Deterministic Information System (DIS) intentionally. A NIS \(\varPhi\) is seen as a diluted DIS ϕ, and we can hide the actual values in ϕ by using \(\varPhi\). We name this way of hiding Information Dilution by non-deterministic information. This paper considers information dilution and its application to hiding the actual values in a table.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of VLDB, pp. 487–499 (1994)
Aggarwal, C., Yu, P.: Privacy-Preserving Data Mining. In: Advances in Database Systems, vol. 34. Springer (2008)
Grzymała-Busse, J.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)
Grzymała-Busse, J., Rząsa, W.: A local version of the MLEM2 algorithm for rule induction. Fundamenta Informaticae 100, 99–116 (2010)
Lipski, W.: On semantic issues connected with incomplete information data base. ACM Trans. DBS 4, 269–296 (1979)
Lipski, W.: On databases with incomplete information. Journal of the ACM 28, 41–70 (1981)
Nakata, M., Sakai, H.: Twofold rough approximations under incomplete information. International Journal of General Systems 42(6), 546–571 (2013)
Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoretical Computer Science 29, 27–39 (1984)
Pawlak, Z.: Rough Sets. Kluwer Academic Publishers (1991)
RNIA software logs, http://www.mns.kyutech.ac.jp/~sakai/RNIA
Sakai, H., Ishibashi, R., Nakata, M.: On rules and apriori algorithm in non-deterministic information systems. Transactions on Rough Sets 9, 328–350 (2008)
Sakai, H., Okuma, H., Nakata, M.: Rough non-deterministic information analysis: Foundations and its perspective in machine learning. In: Smart Innovation, Systems and Technologies, ch. 9, vol. 13, pp. 215–247. Springer (2013)
Sakai, H., Okuma, H., Wu, M., Nakata, M.: Rough non-deterministic information analysis for uncertain information. In: The Handbook on Reasoning-Based Intelligent Systems, ch. 4, pp. 81–118. World Scientific (2013)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Intelligent Decision Support. Handbook of Advances and Applications of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sakai, H., Wu, M., Yamaguchi, N., Nakata, M. (2013). Rough Set-Based Information Dilution by Non-deterministic Information. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2013. Lecture Notes in Computer Science(), vol 8170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41218-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-41218-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41217-2
Online ISBN: 978-3-642-41218-9
eBook Packages: Computer ScienceComputer Science (R0)