Abstract
In this paper, we study the problem of structural sense ranking for tree data using a multi-relational PageRank approach. By considering multiple types of structural relations, the original tree structural context is better leveraged and used to improve the ranking of the senses associated to the tree elements. Upon this intuition, we advance research on the application of PageRank-style methods to semantic graphs inferred from semistructured/plain text data by developing the first PageRank-based formulations that exploit heterogeneity of links to address the problem of structural sense ranking in tree data. Experiments on a large real-world benchmark have confirmed the performance improvement hypothesis of our proposed multi-relational approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agirre, E., Soroa, A.: Personalizing PageRank for Word Sense Disambiguation. In: Proc. 12th Conf. of the European Chapter of the Association for Computational Linguistics (EACL), pp. 33–41 (2009)
Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-Based Keyword Search in Databases. In: Proc. Int. Conf. on Very Large Data Bases (VLDB), pp. 564–575 (2004)
Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In: Proc. ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR), pp. 25–32 (2004)
Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Comput. Ling. 32(1), 13–47 (2006)
Davis, D.A., Lichtenwalter, R., Chawla, N.V.: Multi-relational Link Prediction in Heterogeneous Information Networks. In: Proc. Int. Conf. on Advances in Social Networks Analysis and Mining (ASONAM), pp. 281–288 (2011)
Deng, H., Han, J., Lyu, M.R., King, I.: Modeling and exploiting heterogeneous bibliographic networks for expertise ranking. In: Proc. Int. Joint Conf. on Digital Libraries (JCDL), pp. 71–80 (2012)
Fagin, R., Kumar, R., Sivakumar, D.: Comparing Top k Lists. SIAM Journal on Discrete Mathematics 17(1), 134–160 (2003)
Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In: Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 1606–1611 (2007)
Gracia, J.L., Mena, E.: Web-Based Measure of Semantic Relatedness. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 136–150. Springer, Heidelberg (2008)
Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Information Systems 20(4), 422–446 (2002)
Kashyap, A., Amini, R., Hristidis, V.: SonetRank: leveraging social networks to personalize search. In: Proc. ACM Conf. on Information and Knowledge Management (CIKM), pp. 2045–2049 (2012)
Lee, S., Song, S., Kahng, M., Lee, D., Lee, S.: Random walk based entity ranking on graph for multidimensional recommendation. In: Proc. ACM Conf. on Recommender Systems (RecSys), pp. 93–100 (2011)
Mihalcea, R., Tarau, P., Figa, E.: PageRank on Semantic Networks, with Application to Word Sense Disambiguation. In: Proc. 20th Int. Conf. on Computational Linguistics (COLING) (2004)
Nie, Z., Zhang, Y., Wen, J.-R., Ma, W.-Y.: Object-level ranking: bringing order to Web objects. In: Proc. ACM Conf. on World Wide Web (WWW), pp. 567–574 (2005)
Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: integrating clustering with ranking for heterogeneous information network analysis. In: Proc. Int. Conf. on Extending Database Technology (EDBT), pp. 565–576 (2009)
Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information networks with star network schema. In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 797–806 (2009)
Tagarelli, A.: Exploring Dictionary-based Semantic Relatedness in Labeled Tree Data. Information Sciences 220, 244–268 (2013)
Tagarelli, A., Gullo, F.: Evaluating PageRank methods for structural sense ranking in labeled tree data. In: Proc. 2nd Int. Conf. on Web Intelligence, Mining and Semantics (WIMS), 36 (2012)
Tsatsaronis, G., Varlamis, I., Nørvåg, K.: SemanticRank: Ranking Keywords and Sentences Using Semantic Graphs. In: Proc. Int. Conf. on Computational Linguistics (COLING), pp. 1074–1082 (2010)
Zhang, M., Feng, S., Tang, J., Ojokoh, B., Liu, G.: Co-ranking multiple entities in a heterogeneous network: Integrating temporal factor and users’ bookmarks. In: Airong, J. (ed.) ICADL 2011. LNCS, vol. 7008, pp. 202–211. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Interdonato, R., Tagarelli, A. (2013). Multi-relational PageRank for Tree Structure Sense Ranking. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds) Web Information Systems Engineering – WISE 2013. WISE 2013. Lecture Notes in Computer Science, vol 8180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41230-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-41230-1_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41229-5
Online ISBN: 978-3-642-41230-1
eBook Packages: Computer ScienceComputer Science (R0)