Skip to main content

Parallel Computing for Gene Networks Reverse Engineering

  • Chapter
  • First Online:
Approaches in Integrative Bioinformatics

Abstract

Gene networks provide a mathematical representation of gene interactions that govern biological processes in every living organism. Given a gene expression data, the goal of network inference is to reconstruct the underlying regulatory network. The problem is challenging owing to the convoluted nature of biological interactions and imperfection of experimental data. In many cases, the resulting computational models are too complex to execute on a sequential computer and require scalable parallel approaches. In this chapter, we describe network inference methods based on information theory and show a parallel algorithm that enables whole-genome networks reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aluru M, Zola J, Nettleton D et al (2013) Reverse engineering and analysis of large genome-scale gene networks. Nucl Acids Res 41(1):e24

    Article  Google Scholar 

  2. Basso K, Margolin A, Stolovitzky G et al (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382–390

    Article  Google Scholar 

  3. Butte AJ, Kohane IS (1999) Unsupervised knowledge discovery in medical databases using relevance networks. In: Proceedings of the American medical informatics association symposium, Washington, DC, pp. 711–715

    Google Scholar 

  4. Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  5. Daub CO, Steuer R, Selbig J et al (2004) Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data. BMC Bioinform 5:118

    Article  Google Scholar 

  6. de la Fuente A, Bing N, Hoeschele I et al (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20(18):3565–3574

    Google Scholar 

  7. D’haeseleer P, Wen X, Fuhrman S et al (1998) Mining the gene expression matrix: inferring gene relationships from large scale gene expression data. In: Information processing in cells and tissues. Plenum Press, New York

    Google Scholar 

  8. EMBL-EBI ArrayExpress. http://www.ebi.ac.uk/microarray-as/aer/

  9. Faith JJ, Hayete B, Thaden JT et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8

    Article  Google Scholar 

  10. Friedman N, Linial M, Nachman I et al (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620

    Article  Google Scholar 

  11. Gregoretti F, Belcastro V, di Bernardo D et al (2010) A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks. PLoS One 5(4):e10179

    Google Scholar 

  12. Hoops S, Sahle S, Gauges R, et al (2006) COPASI – a complex pathway simulator. Bioinformatics 22(24):3067–3074

    Article  Google Scholar 

  13. Kraskov A, Stogbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6 Pt 2):066138

    Article  MathSciNet  Google Scholar 

  14. Long J, Roth M (2008) Synthetic microarray data generation with RANGE and NEMO. Bioinformatics 24(1):132–134

    Article  Google Scholar 

  15. Marbach D, Prill RJ, Schaffter T et al (2010) Revealing strengths and weaknesses of methods for gene network inference. PNAS 107(14):6286–6291

    Article  Google Scholar 

  16. NASC European Arabidopsis Stock Centre. http://www.arabidopsis.info/

  17. NCBI Gene Expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/

  18. Nikolova O, Zola J, Aluru S (2013) Parallel globally optimal structure learning of Bayesian networks. J Parallel Distrib Comput 73(8):1039–1048. ISSN 0743-7315, http://dx.doi.org/10.1016/j.jpdc.2013.04.001

    Google Scholar 

  19. Schafer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764

    Article  Google Scholar 

  20. Schaffter T, Marbach D, Floreano D (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16):2263–2270

    Article  Google Scholar 

  21. Shi H, Schmidt B, Liu W et al (2011) Parallel mutual information estimation for inferring gene regulatory networks on GPUs. BMC Res Notes 4:189

    Google Scholar 

  22. TAIR. http://www.arabidopsis.org/

  23. van den Bulcke T, Van Leemput K, Naudts B et al (2006) SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinform 7:43

    Article  Google Scholar 

  24. Yu H, Smith A, Wang P et al (2002) Using Bayesian network inference algorithms to recover molecular genetic regulatory networks. In: Proceedings of the international conference on systems biology, Edmonton

    Google Scholar 

  25. Zola J, Aluru M, Sarje A et al (2010) Parallel information-theory-based construction of genome-wide gene regulatory networks. IEEE Trans Parall Distrib Syst 21(12):1721–1733

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Zola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zola, J. (2014). Parallel Computing for Gene Networks Reverse Engineering. In: Chen, M., Hofestädt, R. (eds) Approaches in Integrative Bioinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41281-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41281-3_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41280-6

  • Online ISBN: 978-3-642-41281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics