Skip to main content

Petri Nets for Modeling and Analyzing Biochemical Reaction Networks

  • Chapter
  • First Online:
Approaches in Integrative Bioinformatics

Abstract

Petri nets have been widely used to model and analyze biochemical reaction networks. This chapter gives an overview of different types of Petri nets within a unifying Petri net framework that comprises the qualitative, stochastic, continuous, and hybrid paradigms at both uncolored and colored levels. The Petri net framework permits to investigate one and the same biological reaction network with different modeling abstractions in various complementary ways. We describe the use of the framework to investigate biochemical reaction networks with the help of the unifying Petri net tool, Snoopy, and its close friends Charlie and Marcie. The repressilator example serves as running case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aziz A, Sanwal K, Singhal V, Brayton R (2000) Model checking continuous-time Markov chains. ACM Trans Comput Log 1(1):162–170

    Article  MathSciNet  Google Scholar 

  2. Baldan P, Cocco N, Marin A, Simeoni M (2010) Petri nets for modelling metabolic pathways: a survey. Nat Comput 9(4):955–989

    Article  MATH  MathSciNet  Google Scholar 

  3. Blätke M, Dittrich A, Rohr C, Heiner M, Schaper F, Marwan W (2013a) JAK/STAT signalling – an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology. Mol Biosyst 9:1290–1307

    Article  Google Scholar 

  4. Blätke M, Rohr C, Heiner M, Marwan W (2013b, in preparation) A Petri net based framework for biomodel engineering. In: Benner P, Findeisen R, Flockerzi D, Reichl U, Sundmacher K (eds) Large scale networks in engineering and life sciences. Lecture notes of a Summer School held in Magdeburg, 26–30 Sept 2011

    Google Scholar 

  5. Blossey R, Cardelli L, Phillips A (2008) Compositionality, stochasticity and cooperativity in dynamic models of gene regulation. HFSP J 2(1):17–28

    Article  Google Scholar 

  6. Breitling R, Gilbert D, Heiner M, Orton R (2008) A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform 9(5):404–421

    Article  Google Scholar 

  7. Calzone L, Chabrier-Rivier N, Fages F, Soliman S (2006) Machine learning biochemical networks from temporal logic properties. In: Priami C et al (eds) Transactions on computational systems biology. LNCS 4220. Springer, Berlin/Heidelberg, pp 68–94

    Google Scholar 

  8. Cardelli L, Wegner P (1985) On understanding types, data abstraction, and polymorphism. Comput Surv 17(4):471–522

    Article  Google Scholar 

  9. Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8(4):210–219

    Article  Google Scholar 

  10. Ciardo G (1994) Petri nets with marking-dependent arc cardinality. In: Valette R (ed) Properties and analysis, advances in petri nets. LNCS 815. Springer, Berlin/Heidelberg, pp 179–198

    Google Scholar 

  11. Clarke EM, Grumberg O, Peled DA (2001) Model checking. MIT, Cambridge

    Google Scholar 

  12. Donaldson R, Gilbert D (2008) A model checking approach to the parameter estimation of biochemical pathways. In: Proceedings of the 6th international conference on computational methods in systems biology, Rostock. LNCS 5307. Springer, pp 269–287

    Google Scholar 

  13. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  Google Scholar 

  14. Franzke A (2009) Charlie 2.0 – a multi-threaded Petri net analyzer. Master’s thesis, Computer Science Department, Brandenburg University of Technology Cottbus

    Google Scholar 

  15. Gao Q, Gilbert D, Heiner M, Liu F, Maccagnola D, Tree D (2012) Multiscale modelling and analysis of planar cell polarity in the Drosophila wing. IEEE/ACM Trans Comput Biol Bioinform 10(2):337–351

    Google Scholar 

  16. Gecode (2013) Gecode: an open constraint solving library. http://www.gecode.org/. Accessed on 2 Nov 2013

  17. Genrich HJ, Lautenbach K (1979) The analysis of distributed systems by means of predicate/transition-nets. In: Proceedings of the international symposium on semantics of concurrent computation, Evian. LNCS 70. Springer, pp 123–146

    Google Scholar 

  18. German R (2001) Performance analysis of communication systems with non-Markovian stochastic Petri nets. Wiley, New York

    Google Scholar 

  19. Gilbert D, Heiner M (2006) From Petri nets to differential equations – an integrative approach for biochemical network analysis. In: Proceedings of the 27th international conference on applications and theory of Petri nets and other models of concurrency, Turku. LNCS 4024. Springer, pp 181–200

    Google Scholar 

  20. Gilbert D, Heiner M, Liu F, Saunders N (2013) Colouring space – a coloured framework for spatial modelling in systems biology. In: Proceedings of the PETRI NETS 2013, Milan. LNCS 7927. Springer, pp 230–249

    Google Scholar 

  21. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  Google Scholar 

  22. Heath AP, Kavraki LE (2009) Computational challenges in systems biology. Comput Sci Rev 3(1):1–17

    Article  Google Scholar 

  23. Heiner M (2009) Understanding network behaviour by structured representations of transition invariants – a Petri net perspective on systems and synthetic biology. Natural computing series. Springer, Berlin/Heidelberg, pp 367–389

    Google Scholar 

  24. Heiner M, Gilbert D (2011) How might Petri nets enhance your systems biology toolkit. In: Proceedings of the PETRI NETS 2011, Newcastle. LNCS 6709. Springer, pp 17–37

    Google Scholar 

  25. Heiner M, Gilbert D (2012) Biomodel engineering for multiscale systems biology. Prog Biophys Mol Biol 111(2–3)

    Google Scholar 

  26. Heiner M, Koch I (2004) Petri net based system validation in systems biology. In: Proceedings of the ICATPN 2004, Bologna, June 2004. LNCS 3099. Springer, pp 216–237

    Google Scholar 

  27. Heiner M, Sriram K (2010) Structural analysis to determine the core of hypoxia response network. PLoS ONE 5(1):e8600

    Article  Google Scholar 

  28. Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. In: Proceedings of the 8th international conference on formal methods for computational systems biology (CMSB 2008), Rostock. LNCS 5016. Springer, pp 215–264

    Google Scholar 

  29. Heiner M, Lehrack S, Gilbert D, Marwan W (2009) Extended stochastic Petri nets for model-based design of wetlab experiments. In: Priami C et al (eds) Transactions on computational systems biology XI. LNBI 5750. Springer, Berlin/Heidelberg, pp 138–163

    Google Scholar 

  30. Heiner M, Donaldson R, Gilbert D (2010) Petri nets for systems biology, chapter 3. In: Iyengar MS (ed) Symbolic systems biology: theory and methods. Jones and Bartlett Publishers, LCC, pp 61–97

    Google Scholar 

  31. Heiner M, Herajy M, Liu F, Rohr C, Schwarick M (2012) Snoopy – a unifying Petri net tool. In: Proceedings of the PETRI NETS 2012, Hamburg. LNCS 7347. Springer, pp 398–407

    Google Scholar 

  32. Heiner M, Rohr C, Schwarick M (2013) MARCIE – model checking and reachability analysis done efficiently. In: Proceedings of the PETRI NETS 2013, Milan. LNCS 7927. Springer, pp 389–399

    Google Scholar 

  33. Herajy M (2013) Distributed collaborative and interactive simulation of large scale biochemical networks. PhD thesis, Brandenburg University of Technology Cottbus

    Google Scholar 

  34. Herajy M, Heiner M (2012) Hybrid representation and simulation of stiff biochemical networks. J Nonlinear Anal Hybrid Syst 6(4):942–959

    Article  MATH  MathSciNet  Google Scholar 

  35. Hindmarsh A, Brown P, Grant K, Lee S, Serban R, Shumaker D, Woodward C (2005) Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31(3):363–396

    Article  MATH  MathSciNet  Google Scholar 

  36. Hofestädt R (1994) A Petri net application of metabolic processes. J Syst Anal Model Simul 16:113–122

    MATH  Google Scholar 

  37. Jensen K (1981) Coloured Petri nets and the invariant-method. Theor Comput Sci 14(3): 317–336

    Article  MATH  Google Scholar 

  38. Liu F (2012) Colored Petri nets for systems biology. PhD thesis, Brandenburg University of Technology Cottbus

    Google Scholar 

  39. Liu F, Heiner M, Rohr C (2012) Manual for colored Petri nets in Snoopy. http://www-dssz.informatik.tu-cottbus.de/publications/btu-reports/Manual_for_colored_Petri_nets_2012_03.pdf

  40. Lund EW (1965) Guldberg and Waage and the law of mass action. J Chem Educ 42(10):548

    Article  Google Scholar 

  41. Marsan MA, Balbo G, Conte G, Donatelli S, Franceschinis G (1995) Modelling with generalized stochastic Petri nets. Wiley series in parallel computing. Wiley, New York

    Google Scholar 

  42. Marwan W, Rohr C, Heiner M (2012) Petri nets in Snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. Volume 804 of Methods in molecular biology, chapter 21. Humana Press, pp 409–437

  43. Matlab (2013) http://www.mathworks.cn

  44. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  45. Parker D (2002) Implementation of symbolic model checking for probabilistic systems. PhD thesis, University of Birmingham

    Google Scholar 

  46. Petri CA (1962) Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, Bonn

    Google Scholar 

  47. Pnueli A (1981) The temporal semantics of concurrent programs. Theor Comput Sci 13(1): 45–60

    Article  MATH  MathSciNet  Google Scholar 

  48. Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representations in metabolic pathways. In: Proceedings of the 1st international conference on intelligent systems for molecular biology, Bethesda. AAAI, pp 328–336

    Google Scholar 

  49. Rohr C, Marwan W, Heiner M (2010) Snoopy – a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7):974–975

    Article  Google Scholar 

  50. Schwarick M, Tovchigrechko A (2010) IDD-based model validation of biochemical networks. Theor Comput Sci 412(26)

    Google Scholar 

  51. Schwarick M, Rohr C, Heiner M (2011) MARCIE – model checking and reachability analysis done efficiently. In: Proceedings of the 8th international conference on quantitative evaluation of systems, Aachen. IEEE, pp 91–100

    Google Scholar 

  52. Segel LA (1980) Mathematical models in molecular cellular biology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  53. Soliman S, Heiner M (2010) A unique transformation from ordinary differential equations to reaction networks. PLoS ONE 5(12):e14284

    Article  Google Scholar 

  54. Stewart W (1994) Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton

    MATH  Google Scholar 

  55. Tsang EPK (1993) Foundations of constraint satisfaction. Academic, London/San Diego

    Google Scholar 

  56. Wegener J, Schwarick M, Heiner M (2011) A plugin system for Charlie. In: Proceedings of the international workshop on concurrency, specification, and programming (CS&P 2011), Pułtusk. Białystok University of Technology, pp 531–554. ISBN:978-83-62582-06-8

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Germany Federal Ministry of Education and Research (0315449H), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT.NSRIF.2009005), and National Natural Science Foundation of China (61273226). We would like to thank David Gilbert and Wolfgang Marwan for many fruitful discussions and Mary Ann Blätke, Mostafa Herajy, Christian Rohr, and Martin Schwarick for their assistance in model construction, software development, and model checking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, F., Heiner, M. (2014). Petri Nets for Modeling and Analyzing Biochemical Reaction Networks. In: Chen, M., Hofestädt, R. (eds) Approaches in Integrative Bioinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41281-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41281-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41280-6

  • Online ISBN: 978-3-642-41281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics