Abstract
Three-way decision model is an extension of two-way decision model, in which boundary region decision is regarded as a new feasible decision choice when precise decision can not be immediately made due to lack of available information. In this paper, a cost-sensitive sequential three-way decision model is presented, which simulate a gradual decision process from rough granule to precise granule. At the beginning of the sequential decision process, the decision results have a high decision cost and many instances are decided as boundary region due to lack of information. With the increasing of the decision steps, the decision cost decrease and more instances are precisely decided. Eventually the decision cost achieve at a satisfying value and the boundary region disappears. The paper presents both theoretic analysis and experimental validation on this proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Herbert, J.P., Yao, J.T.: Game-theoretic risk analysis in decision-theoretic rough sets. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 132–139. Springer, Heidelberg (2008)
Herbert, J.P., Yao, J.T.: Game-theoretic rough sets. Fundamenta Informaticae (3-4), 267–286 (2011)
Jia, X.Y., Shang, L., Chen, J.J.: Attribute reduction based on minimum decision cost. Journal of Frontiers of Computer Science and Technology 5, 155–160 (2011) (in Chinese)
Li, H.X., Liu, D., Zhou, X.Z.: Survey on decision-theoretic rough set model. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) 22, 624–630 (2010) (in Chinese)
Li, H.X., Zhou, X.Z., Zhao, J.B., Huang, B.: Cost-Sensitive classification based on decision-theoretic rough set model. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 379–388. Springer, Heidelberg (2012)
Li, H.X., Zhou, X.Z., Zhao, J.B., Liu, D.: Attribute reduction in decision-theoretic rough set model: A further investigation. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 466–475. Springer, Heidelberg (2011)
Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: A three-way view decision model. International Journal of Computational Intelligence Systems 4, 1–11 (2011)
Li, H.X., Zhou, X.Z., Li, T.R., Wang, G.Y., Miao, D.Q., Yao, Y.Y. (eds.): Decision-Theoretic Rough Sets Theory and Recent Research. Science Press, Beijing (2011) (in Chinese)
Li, W., Miao, D.Q., Wang, W.L., Zhang, N.: Hierarchical rough decision theoretic framework for text classification. In: Proceedings of ICCI 2010, pp. 484–489. IEEE Press (2010)
Liu, D., Li, H.X., Zhou, X.Z.: Two decades’ research on decision-theoretic rough sets. In: Proceedings of ICCI 2010, pp. 968–973. IEEE Press (2010)
Liu, D., Li, T.R., Hu, P., Li, H.X.: Multiple-category classification with decision-theoretic rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 703–710. Springer, Heidelberg (2010)
Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-theoretic rough sets. Fundamenta Informaticae 115, 173–188 (2012)
Liu, D., Li, T.R., Ruan, D.: Probabilistic model criteria with decision-theoretic rough sets. Information Sciences 181, 3709–3722 (2011)
Min, F., Liu, Q.H.: A hierarchical model for test-cost-sensitive decision systems. Information Sciences 179, 2442–2452 (2009)
Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction. Information Sciences 181, 4928–4942 (2011)
Yao, J.T., Herbert, J.P.: Web-based support systems with rough set analysis. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 360–370. Springer, Heidelberg (2007)
Yao, Y.Y.: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)
Yao, Y.Y.: The superiority of three-way decision in probabilistic rough set models. Information Sciences 181, 1080–1096 (2011)
Yao, Y.Y.: Three-way decision: An interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 642–649. Springer, Heidelberg (2009)
Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180, 341–353 (2010)
Yao, Y.Y., Deng, X.F.: Sequential three-way decisions with probabilistic rough sets. In: Proceedings of ICCI*CC 2011, pp. 120–125. IEEE Press (2011)
Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North-Holland, New York (1990)
Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-teoretic rough set models. Information Sciences 178, 3356–3373 (2008)
Yu, H., Chu, S.S., Yang, D.C.: Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 687–694. Springer, Heidelberg (2010)
Zhou, X.Z., Li, H.X.: A multi-view decision model based on decision-theoretic rough set. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 650–657. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, H., Zhou, X., Huang, B., Liu, D. (2013). Cost-Sensitive Three-Way Decision: A Sequential Strategy. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds) Rough Sets and Knowledge Technology. RSKT 2013. Lecture Notes in Computer Science(), vol 8171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41299-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-41299-8_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41298-1
Online ISBN: 978-3-642-41299-8
eBook Packages: Computer ScienceComputer Science (R0)