Abstract
Rough set theory has been attracting researchers and practitioners over three decades. The theory and its applications experienced unprecedented prosperity especially in the recent ten years. It is essential to explore and review the progress made in the field of rough sets. Mainly based on Web of Science database, we analyze the prolific authors, impact authors, impact groups, and the most impact papers in the past three decades. In addition, we also examine rough set development in the recent five years. One of the goals of this article is to use scientometrics approaches to study three decade research in rough sets. We review the historic growth of rough sets and elaborate on recent development status in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahn, B.S., Cho, S.S., Kim, C.Y.: The integrated methodology of rough set theory and artificial neural network for business failure prediction. Expert Systems with Applications 18(2), 65–74 (2000)
Aksnes, D.W.: Citation rates and perceptions of scientific contribution. Journal of the American Society for Information Science and Technology 57(2), 169–185 (2006)
Bai, C.G., Sarkis, J.: Integrating sustainability into supplier selection with grey system and rough set methodologies. International Journal of Production Economics 124(1), 252–264 (2010)
Bar-Ilan, J.: Which h-index? A comparison of WoS, Scopus and Google Scholar. Scientometrics 74(2), 257–271 (2008)
Cardinal, B.J., Thomas, J.R.: The 75th anniversary of research quarterly for exercise and sport: An analysis of status and contributions. Research Quarterly for Exercise and Sport 76(suppl. 2), S122–S134 (2005)
Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 504–513. Springer, Heidelberg (2012)
Dietz, L., Bickel, S., Scheffer, T.: Unsupervised prediction of citation influences. In: Proceedings of the 24th International Conference on Machine Learning, pp. 233–240. ACM (2007)
Dimitras, A., Slowinski, R., Susmaga, R., Zopounidis, C.: Business failure prediction using rough sets. European Journal of Operational Research 114(2), 263–280 (1999)
Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General System 17(2-3), 191–209 (1990)
Feng, F., Jun, Y.B., Zhao, X.Z.: Soft semirings. Computers & Mathematics with Applications 56(10), 2621–2628 (2008)
Feng, F., Li, C.X., Davvaz, B., Ali, M.I.: Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Computing 14(9), 899–911 (2010)
Feng, F., Liu, X.Y., Leoreanu-Fotea, V., Jun, Y.B.: Soft sets and soft rough sets. Information Sciences 181(6), 1125–1137 (2011)
Garfield, E., Welljams-Dorof, A.: Of nobel class: A citation perspective on high impact research authors. Theoretical Medicine 13, 117–135 (1992)
Google: Google Scholar Metrics (2013), http://scholar.google.com/intl/en/scholar/metrics.html/ (accessed July 09, 2013)
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)
Greco, S., Matarazzo, B., Słowiński, R.: Rough membership and bayesian confirmation measures for parameterized rough sets. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 314–324. Springer, Heidelberg (2005)
Greco, S., Matarazzo, B., Słowiński, R.: Parameterized rough set model using rough membership and bayesian confirmation measures. International Journal of Approximate Reasoning 49(2), 285–300 (2008)
Herbert, J.P., Yao, J.T.: Game-theoretic rough sets. Fundamenta Informaticae 108(3-4), 267–286 (2011)
Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America 102(46), 16569–16572 (2005)
Hu, Q.H., Yu, D.R., Liu, J.F., Wu, C.X.: Neighborhood rough set based heterogeneous feature subset selection. Information Sciences 178(18), 3577–3594 (2008)
Hu, Q.H., Yu, D.R., Xie, Z.X.: Neighborhood classifiers. Expert Systems with Applications 34(2), 866–876 (2008)
Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Transactions on Fuzzy Systems 17(4), 824–838 (2009)
Katzberg, J.D., Ziarko, W.: Variable precision rough sets with asymmetric bounds. In: Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 167–177. Springer (1994)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112(1), 39–49 (1998)
Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113(3), 271–292 (1999)
Li, H., Sun, J.: Ranking-order case-based reasoning for financial distress prediction. Knowledge-Based Systems 21(8), 868–878 (2008)
Li, R.P., Wang, Z.O.: Mining classification rules using rough sets and neural networks. European Journal of Operational Research 157(2), 439–448 (2004)
Liu, G.L.: Generalized rough sets over fuzzy lattices. Information Sciences 178(6), 1651–1662 (2008)
Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 11(3), 748–768 (2000)
Pawlak, Z.: Rough sets. International Journal of Parallel Programming 11(5), 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academatic Publishers, Boston (1991)
Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99(1), 48–57 (1997)
Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernetics & Systems 29(7), 661–688 (1998)
Pawlak, Z.: Decision rules, Bayes’ rule and rough sets. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 1–9. Springer, Heidelberg (1999)
Pawlak, Z.: Rough sets, decision algorithms and Bayes’ theorem. European Journal of Operational Research 136(1), 181–189 (2002)
Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Communications of the ACM 38(11), 88–95 (1995)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)
Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177(1), 41–73 (2007)
Pawlak, Z., Skowron, A.: Rough sets: some extensions. Information Sciences 177(1), 28–40 (2007)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1996)
Qian, Y.H., Liang, J.Y., Li, D.Y., Zhang, H.Y., Dang, C.Y.: Measures for evaluating the decision performance of a decision table in rough set theory. Information Sciences 178(1), 181–202 (2008)
Qian, Y.H., Liang, J.Y., Pedrycz, W., Dang, C.Y.: Positive approximation: An accelerator for attribute reduction in rough set theory. Artificial Intelligence 174(9), 597–618 (2010)
Shen, L.X., Tay, F.E., Qu, L.S., Shen, Y.D.: Fault diagnosis using rough sets theory. Computers in Industry 43(1), 61–72 (2000)
Ślęzak, D., Ziarko, W.: The investigation of the bayesian rough set model. International Journal of Approximate Reasoning 40(1), 81–91 (2005)
Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12(2), 331–336 (2000)
Small, H.: Tracking and predicting growth areas in science. Scientometrics 68(3), 595–610 (2006)
Suraj, Z., Grochowalski, P., Lew, Ł.: Discovering patterns of collaboration in rough set research: Statistical and graph-theoretical approach. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 238–247. Springer, Heidelberg (2011)
Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 833–849 (2003)
Thangavel, K., Pethalakshmi, A.: Dimensionality reduction based on rough set theory: A review. Applied Soft Computing 9(1), 1–12 (2009)
Wang, X.Z., Zhai, J.H., Lu, S.X.: Induction of multiple fuzzy decision trees based on rough set technique. Information Sciences 178(16), 3188–3202 (2008)
Wang, X.Y., Yang, J., Teng, X.L., Xia, W.J., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 28(4), 459–471 (2007)
White, H.D., McCain, K.W.: Visualizing a discipline: An author co-citation analysis of information science, 1972-1995. Journal of the American Society for Information Science 49(4), 327–355 (1998)
Wu, W.Z.: Attribute reduction based on evidence theory in incomplete decision systems. Information Sciences 178(5), 1355–1371 (2008)
Wu, W.Z., Mi, J.S., Zhang, W.X.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)
Xiao, Z., Gong, K., Zou, Y.: A combined forecasting approach based on fuzzy soft sets. Journal of Computational and Applied Mathematics 228(1), 326–333 (2009)
Yang, X.B., Yang, J.Y., Wu, C., Yu, D.J.: Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Information Sciences 178(4), 1219–1234 (2008)
Yao, J.T.: A ten-year review of granular computing. In: IEEE International Conference on Granular Computing, pp. 734–734. IEEE (2007)
Yao, J.T.: Recent developments in granular computing: a bibliometrics study. In: IEEE International Conference on Granular Computing, pp. 74–79. IEEE (2008)
Yao, J.T., Vasilakos, A.V., Pedrycz, W.: Granular computing: Perspectives and challenges. IEEE Transactions on Cybernetics PP(99), 1–13 (2013)
Yao, Y.Y.: Duality in rough set theory on square if opposition, doi:10.3233/FI-2013-881
Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15(4), 291–317 (1996)
Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109(1), 21–47 (1998)
Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111(1), 239–259 (1998)
Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16(1), 87–104 (2001)
Yao, Y.Y.: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)
Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Approximate Reasoning 49(2), 255–271 (2008)
Yao, Y.Y.: Three-way decision: An interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 642–649. Springer, Heidelberg (2009)
Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180(3), 341–353 (2010)
Yao, Y.Y.: An outline of a theory of three-way decisions. In: Yao, J., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012)
Yao, Y.Y., Chen, Y.H.: Subsystem based generalizations of rough set approximations. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 210–218. Springer, Heidelberg (2005)
Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. International Journal of Man-Machine Studies 37(6), 793–809 (1992)
Yao, Y.Y., Yao, B.X.: Covering based rough set approximations. Information Sciences 200 (2012)
Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Information Sciences 178(17), 3356–3373 (2008)
Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Sciences 179(3), 210–225 (2009)
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39–59 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, J., Zhang, Y. (2013). A Scientometrics Study of Rough Sets in Three Decades. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds) Rough Sets and Knowledge Technology. RSKT 2013. Lecture Notes in Computer Science(), vol 8171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41299-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-41299-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41298-1
Online ISBN: 978-3-642-41299-8
eBook Packages: Computer ScienceComputer Science (R0)