Abstract
Security systems frequently rely on warning messages to convey important information, especially when a machine is not able to assess a situation automatically. There is a significant body of work studying the effects of warning message design on users with numerous suggestions on how to optimise their effectiveness. Design guidelines and best practises help the developer to display urgent information. In this paper, we present the first empirical analysis on the extent of the influence of linguistic properties on the perceived difficulty of the descriptive text in warning messages. We evaluate warning messages extracted from current browsers and present linguistic properties that can improve a warning message text’s perceived difficulty. Our results confirm that, while effects of attention, attitude and beliefs are at least as important as the linguistic complexity of the text, several steps can be taken to improve the text’s difficulty perceived by the user.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Backhaus, A., Brügelmann, H., Knorre, S., Metze, W.: Forschungsmanual zum Stolperwörter-Lesetest (2004), http://www.agprim.uni-siegen.de/lust/stolpermanual.pdf
Bravo-Lillo, C., Cranor, L.F., Downs, J., Komanduri, S.: Bridging the Gap in Computer Security Warnings: A Mental Model Approach. IEEE Security & Privacy Magazine 9(2), 18–26 (2011)
Bravo-Lillo, C., Cranor, L.F., Downs, J., Komanduri, S., Sleeper, M.: Improving Computer Security Dialogs. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949, pp. 18–35. Springer, Heidelberg (2011)
Cranor, L.F.: A Framework for Reasoning About the Human in the Loop. In: Proc. UPSEC. USENIX (2008)
DuBay, W.H.: The Principles of Readability, http://www.impact-information.com/impactinfo/readability02.pdf
Egelman, S., Cranor, L.F., Hong, J.: You’ve Been Warned: An Empirical Study of the Effectiveness of Web Browser Phishing Warnings. In: Proc. CHI. ACM (2008)
Grossklags, J., Good, N.: Empirical Studies on Software Notices to Inform Policy Makers and Usability Designers. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 341–355. Springer, Heidelberg (2007)
Harbach, M., Fahl, S., Muders, T., Smith, M.: Poster: Towards Measuring Warning Readability. In: Proc. CCS. ACM (2012)
Maurer, M.-E., De Luca, A., Hussmann, H.: Data Type Based Security Alert Dialogs. In: Proc. CHI Extended Abstracts. ACM (2011)
McLaughlin, G.H.: SMOG Grading – A New Readability Formula. Journal of Reading 12(8), 639–646 (1969)
Rafferty, A., Manning, C.D.: Parsing Three German Treebanks: Lexicalized and Unlexicalized Baselines. In: ACL Workshop on Parsing German (2008)
Spitz, S., Pramateftakis, M., Swoboda, J.: Kryptographie und IT-Sicherheit. Springer (2011)
Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying Wolf: An Empirical Study of SSL Warning Effectiveness. In: USENIX 2009 (August 2009)
Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In: Proceedings of HLT-NAACL (2003)
Wogalter, M.S., Conzola, V.C., Smith-Jackson, T.L.: Research-based Guidelines for Warning Design and Evaluation. Applied Ergonomics 33(3), 219–230 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harbach, M., Fahl, S., Yakovleva, P., Smith, M. (2013). Sorry, I Don’t Get It: An Analysis of Warning Message Texts. In: Adams, A.A., Brenner, M., Smith, M. (eds) Financial Cryptography and Data Security. FC 2013. Lecture Notes in Computer Science, vol 7862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41320-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-41320-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41319-3
Online ISBN: 978-3-642-41320-9
eBook Packages: Computer ScienceComputer Science (R0)