Abstract
The emerging and growing use of electronic medical records (EMRs) nowadays gives the possibility of exploiting the huge amount of collected clinical data for epidemiological research purpose, together with the opportunity to address and verify intervention policies and facility management. In this paper we present a Markov chain based model that makes use of real clinical data to simulate epidemiological scenarios for HIV epidemic at a district level. Ad hoc original software has been used, that can be adopted in every similar scenario. This research project is conducted within the Drug Resource Enhancement Against AIDS and Malnutrition (DREAM) Program to fight HIV/AIDS in sub-Saharan Africa. The results of this paper show in a clear and robust fashion how the proposed Markov chain based model can be helpful to predict epidemiological trends and hence to support decision making to face the diffusion of HIV/AIDS and other sexually transmitted diseases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alsallaq, R.A., Baeten, J.M., Celum, C.L., Hughes, J.P., AbuRaddad, L.J., Barnabas, R.V., Hallett, T.B.: Understanding the potential impact of a combination HIV prevention intervention in a hyper-endemic community. PLoS ONE 8(1) (2013)
Anderson, R.M.: The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. Journal of Acquired Immune Deficiency Syndromes 1(3), 241–256 (1988)
Chan, K.C., Yip, B., Hogg, R.S., Montaner, J.S., O’Shaughnessy: Survival rates after the initiation of antiretroviral therapy stratified by cd4 cell counts in two cohorts in canada and the united states. AIDS 16(12), 1693–1695 (2002)
Das, M., Lee Chu, P., Santos, G.M., Scheer, S., Vittinghoff, E., McFarland, W., Colfax, G.N.: Decreases in community viral load are accompanied by reductions in new HIV infections in san francisco. PLoS Med. 5(6) (2010)
Donnell, D., Baeten, J.M., Kiarie, J., Thomas, K.K., Stevens, W., Cohen, C.R., McIntyre, J., Lingappa, J.R., Celum, C.: Heterosexual HIV-1 transmission after initiation of antiretrovirval therapy: A prospective cohort analysis. The Lancet 375(9731), 2092–2098 (2010)
Eaton, J.W., Johnson, L.F., Salomon, J.A., Bärnighausen, T., Bendavid, E., Bershteyn, A., Bloom, D.E., Cambiano, V., Fraser, C., Hontelez, J.A.C., Humair, S., Klein, D.J., Long, E.F., Phillips, A.N., Pretorius, C., Stover, J., Wenger, E.A., Williams, B.G., Hallett, T.B.: HIV treatment as prevention: Systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in south africa. PLoS Med. 9(7) (2012)
Granich, R.M., Gilks, C.F., Dye, C., De Cock, K.M., Williams, B.G.: Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model. The Lancet 373(3), 48–57 (2009)
Handcocka, M.S., Holland Jonesb, J.: Likelihood-based inference for stochastic models of sexual network formation. Theoretical Population Biology 65(4), 413–422 (2004)
Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42(4), 599–653 (2000)
Hollingsworth, T.D., Anderson, R.M., Fraser, C.: HIV-1 transmission, by stage of infection. The Journal of Infectious Diseases 198(5), 687–693 (2008)
Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious diseases. Mathematical Biosciences 133, 165–195 (1996)
Lutalo, T., Gray, R.H., Wawer, M., Sewankambo, N., Serwadda, D., Laeyendecker, O., Kiwanuka, N., Nalugoda, F., Kigozi, G., Ndyanabo, A., Bwanika, J.B., Reynolds, S.J., Quinn, T., Opendi, P.: Survival of HIV-infected treatment-naive individuals with documented dates of seroconversion in rakai, uganda. AIDS 19, 15–19 (2007)
Nucita, A., Bernava, G.M., Bartolo, M., Di Pane Masi, F., Giglio, P., Peroni, M., Pizzimenti, G., Palombi, L.: A global approach to the management of EMR (electronic medical records) of patients with HIV/AIDS in sub-saharan africa: the experience of dream software. BMC Medical Informatics and Decision Making 9(42) (2009)
World Health Organization. World health statistics 2008 (2008), http://www.who.int/whosis/whostat/2008/en/index.html
Palombi, L., Bernava, G.M., Nucita, A., Giglio, P., Liotta, G., Nielsen-Saines, K., Orlando, S., Mancinelli, S., Buonomo, E., Scarcella, P., Doro Altan, A.M., Guidotti, G., Ceffa, S., Haswell, J., Zimba, I., Magid, N.A., Marazzi, M.C.: Predicting trends in HIV-1 sexual transmission in sub-saharan africa through the drug resource enhancement against aids and malnutrition model: Antiretrovirals for reduction of population infectivity, incidence and prevalence at the district level. Clinical Infectious Diseases (2012)
Palombi, L., Marazzi, M.C., Guidotti, G., Germano, P., Buonomo, E., Scarcella, P., Doro Altan, A.M., Zimba, I., Magnano San Lio, M., De Luca, A.: Incidence and predictors of death, retention, and switch to second-line regimens in antiretroviral-treated patients in sub-saharan african sites with comprehensive monitoring availability. Clinical Infectious Diseases 48(1), 115–122 (2009)
DREAM Programme (2013), http://dream.santegidio.org
Quinn, T.C., Wawer, M.J., Sewankambo, N., Serwadda, D., Li, C., Wabwire-Mangen, F., Meehan, M.O., Lutalo, T., Gray, R.H.: Viral load and heterosexual transmission of human immunodeficiency virus type 1. New England Journal of Medicine 342(13), 921–929 (2000)
Thiébaut, R., May, M.T.: Mathematical modelling of hiv prevention intervention. AIDS 27(3), 475–476 (2013)
Wood, E., Hogg, R.S., Yip, B., Harrigan, P.R., O’Shaughnessy, M.V., Montaner, J.S.: Is there a baseline cd4 cell count that precludes a survival response to modern antiretroviral therapy? AIDS 17(15), 711–720 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nucita, A. et al. (2013). A Markov Chain Based Model to Predict HIV/AIDS Epidemiological Trends. In: Cuzzocrea, A., Maabout, S. (eds) Model and Data Engineering. MEDI 2013. Lecture Notes in Computer Science, vol 8216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41366-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-41366-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41365-0
Online ISBN: 978-3-642-41366-7
eBook Packages: Computer ScienceComputer Science (R0)