Abstract
At EUROCRYPT 2011, Obana proposed a k-out-of-n secret sharing scheme capable of identifying up to t cheaters with probability 1 − ε under the condition t < k/3. In that scheme, the share size |V i | satisfies |V i | = |S|/ε, which is almost optimal. However, Obana’s scheme is known to be vulnerable to attacks by rushing adversary who can observe the messages sent by the honest participants prior to deciding her own messages. In this paper, we present a new scheme, which is secure against rushing adversary, with |V i | = |S|/ε n − t + 1, assuming t < k/3. We note that the share size of our proposal is substantially smaller compared to |V i | = |S|(t + 1)3n/ε 3n in the scheme by Choudhury at PODC 2012 when the secret is a single field element. A modification of the later scheme is secure against rushing adversary under a weaker t < k/2 condition. Therefore, our scheme demonstrates an improvement in share size achieved for the price of strengthening the assumption on t.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Blakley, G.: Safeguarding cryptographic keys. In: AFIPS:79 National Computer Conference, pp. 313–317. IEEE Computer Society (1979)
Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunications 5(4), 449–458 (1994)
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, vol. 1989, pp. 73–85 (1989)
Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)
Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)
Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2), 133–138 (1988)
McEliece, R., Sarwate, D.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)
Kurosawa, K., Obana, S., Ogata, W.: t-cheater identifiable (k, n) threshold secret sharing schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423. Springer, Heidelberg (1995)
Obana, S.: Almost optimum t-cheater identifiable secret sharing schemes. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 284–302. Springer, Heidelberg (2011)
Choudhury, A.: Brief announcement: optimal amortized secret sharing with cheater identification. In: PODC 2012, pp. 101–102 (2012)
Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)
Carpentieri, M.: A perfect threshold secret sharing scheme to identify cheaters. Des. Codes Cryptography 5(3), 183–187 (1995)
Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer, Heidelberg (2012)
Cramer, R., Damgård, I., Fehr, S.: On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001)
Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial & Applied Mathematics 8(2), 300–304 (1960)
Welch, L., Berlekamp, E.: Error correction for algebraic block codes US Patent 4,633,470 (December 30, 1986)
Roth, R.: Introduction to coding theory. Cambridge University Press (2006)
Wegman, M., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, R., Morozov, K., Takagi, T. (2013). On Cheater Identifiable Secret Sharing Schemes Secure against Rushing Adversary. In: Sakiyama, K., Terada, M. (eds) Advances in Information and Computer Security. IWSEC 2013. Lecture Notes in Computer Science, vol 8231. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41383-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-41383-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41382-7
Online ISBN: 978-3-642-41383-4
eBook Packages: Computer ScienceComputer Science (R0)