Skip to main content

Behavioral Clustering for Point Processes

  • Conference paper
Advances in Intelligent Data Analysis XII (IDA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8207))

Included in the following conference series:

Abstract

Groups of (parallel) point processes may be analyzed with a variety of different goals. Here we consider the case in which one has a special interest in finding subgroups of processes showing a behavior that differs significantly from the other processes. In particular, we are interested in finding subgroups that exhibit an increased synchrony. Finding such groups of processes poses a difficult problem as its naïve solution requires enumerating the power set of all processes involved, which is a costly procedure. In this paper we propose a method that allows us to efficiently filter the process set for candidate subgroups. We pay special attention to the possibilities of temporal imprecision, meaning that the synchrony is not exact, and selective participation, meaning that only a subset of the related processes participates in each synchronous event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, D., Borgelt, C., Diesmann, M., Gerstein, G., Grün, S.: An Accretion based Data Mining Algorithm for Identification of Sets of Correlated Neurons. In: 18th Annual Computational Neuroscience Meeting, CNS 2009, vol. 10(suppl. 1) (2009), doi:10.1186/1471-2202-10-S1-P254

    Google Scholar 

  2. Borgelt, C., Kötter, T.: Mining Fault-tolerant Item Sets using Subset Size Occurrence Distributions. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 43–54. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Berger, D., Borgelt, C., Louis, S., Morrison, A., Grün, S.: Efficient Identification of Assembly Neurons within Massively Parallel Spike Trains. Computational Intelligence and Neuroscience, Article ID 439648 (2010), doi:10.1155/2010

    Google Scholar 

  4. Braune, C., Borgelt, C., Grün, S.: Finding Ensembles of Neurons in Spike Trains by Non-linear Mapping and Statistical Testing. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 55–66. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Braune, C., Borgelt, C., Grün, S.: Assembly Detection in Continuous Neural Spike Train Data. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 78–89. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Braune, C., Borgelt, C.: Prototype Construction for Clustering of Point Processes based on Imprecise Synchrony. In: 8th Conf. of the European Society for Fuzzy Logic and Technology, EUSFLAT 2013 (submitted, under review, 2013)

    Google Scholar 

  7. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple Neural Spike Train Data Analysis: State-of-the-art and Future Challenges. Nature Neuroscience 7(5), 456–461 (2004), doi:10.1038/nn1228

    Google Scholar 

  8. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York (1988), doi:10.1007/978-0-387-49835-5

    Google Scholar 

  9. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 1996), Portland, Oregon, pp. 226–231. AAAI Press, Menlo Park (1996)

    Google Scholar 

  10. Feldt, S., Waddell, J., Hetrick, V.L., Berke, J.D., Ochowski, M.: Functional Clustering Algorithm for the Analysis of Dynamic Network Data. Physical Review E 79, 056104 (2009), doi:10.1103/PhysRevE.79.056104

    Google Scholar 

  11. Gerstein, G.L., Perkel, D.H., Subramanian, K.N.: Identification of Functionally Related Neural Assemblies. Brain Research 140(1), 43–62 (1978), doi:10.1016/0006-8993(78)90237-8

    Article  Google Scholar 

  12. Grün, S., Abeles, M., Diesmann, M.: Impact of Higher-Order Correlations on Coincidence Distributions of Massively Parallel Data. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds.) Dynamic Brain. LNCS, vol. 5286, pp. 96–114. Springer, Heidelberg (2008), doi:10.1007/978-3-540-88853-6_8)

    Google Scholar 

  13. Grün, S., Diesmann, M., Aertsen, A.M.: ‘Unitary Events’ in Multiple Single-neuron Spiking Activity. I. Detection and Significance. Neural Computation 14(1), 43–80 (2002), doi:10.1162/089976602753284455

    Article  MATH  Google Scholar 

  14. Grün, S., Rotter, S. (eds.): Analysis of Parallel Spike Trains. Springer, Berlin (2010), doi:10.1007/978-1-4419-5675-0_10

    Google Scholar 

  15. Hebb, D.O.: The Organization of Behavior. J. Wiley & Sons, New York (1949)

    Google Scholar 

  16. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence. Springer, London (2013), doi:10.1007/978-1-4471-5013-8

    Book  MATH  Google Scholar 

  17. Lewicki, M.: A Review of Methods for Spike Sorting: The Detection and Classification of Neural Action Potentials. Network 9(4), R53–R78 (1998), doi:10.1088/0954-898X_9_4_001

    Google Scholar 

  18. Louis, S., Borgelt, C., Grün, S.: Complexity Distribution as a Measure for Assembly Size and Temporal Precision. Neural Networks 23(6), 705–712 (2010), doi:10.1016/j.neunet.2010.05.004

    Google Scholar 

  19. Picado-Muino, D., Borgelt, C.: Characterization of Spike Synchrony without Discretization of Time. Neuroinformatics (submitted)

    Google Scholar 

  20. Rand, W.: Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association 336(66), 846–850 (1971), doi:10.2307/2284239

    Article  Google Scholar 

  21. Staude, B., Grün, S., Rotter, S.: Higher-order Correlations in Non-stationary Parallel Spike Trains: Statistical Modeling and Inference. Frontiers in Computational Neuroscience 4, 16 (2010), doi:10.3389/fncom.2010.00016

    Google Scholar 

  22. Staude, B., Rotter, S., Grün, S.: CuBIC: Cumulant Based Inference of Higher-order Correlations in Massively Parallel Spike Trains. Journal of Computational Neuroscience 29(1-2), 327–350 (2010), doi:10.1007/s10827-009-0195-x

    Google Scholar 

  23. Wells III, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal Volume Registration by Maximization of Mutual Information. Medical Image Analysis 1(1), 35–51 (1996), doi:10.1016/S1361-8415(01)80004-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braune, C., Borgelt, C., Kruse, R. (2013). Behavioral Clustering for Point Processes. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41398-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41397-1

  • Online ISBN: 978-3-642-41398-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics