Abstract
We describe the application of a recently published general event detection framework, called EVE to the challenging task of molecular event detection, that is, the automatic detection of structural changes of a molecule over time. Different types of molecular events can be of interest which have, in the past, been addressed by specialized methods. The framework used here allows different types of molecular events to be systematically investigated. In this paper, we summarize existing molecular event detection methods and demonstrate how EVE can be configured for a number of molecular event types.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adä, I., Berthold, M.R.: Eve: a framework for event detection. Evolving Systems 4(1), 61–70 (2013)
Adcock, S.A., McCammon, J.A.: Molecular dynamics: survey of methods for simulating the activity of proteins. Chemical Reviews 106(5), 1589 (2006)
Askar, A., Cetin, A.E., Rabitz, H.: Wavelet transform for analysis of molecular dynamics. The Journal of Physical Chemistry 100(49), 19165–19173 (1996)
Benson, N.C., Daggett, V.: Dynameomics: Large-scale assessment of native protein flexibility. Protein Science 17(12), 2038–2050 (2008)
Benson, N.C., Daggett, V.: A chemical group graph representation for efficient high-throughput analysis of atomistic protein simulations. Journal of Bioinformatics and Computational Biology 10(04) (2012)
Benson, N.C., Daggett, V.: A comparison of multiscale methods for the analysis of molecular dynamics simulations. The Journal of Physical Chemistry B 116(29), 8722–8731 (2012)
Benson, N.C., Daggett, V.: Wavelet analysis of protein motion. International Journal of Wavelets, Multiresolution and Information Processing 10(04) (2012)
Bowen, J.P., Allinger, N.L.: Molecular mechanics: The art and science of parameterization. Reviews in Computational Chemistry, 81–97 (1991)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41(3), 15 (2009)
Coutsias, E.A., Seok, C., Dill, K.A.: Using quaternions to calculate rmsd. Journal of Computational Chemistry 25(15), 1849–1857 (2004)
Flocco, M.M., Mowbray, S.L.: Cα-based torsion angles: A simple tool to analyze protein conformational changes. Protein Science 4(10), 2118–2122 (1995)
Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42. ACM (1999)
Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 32(5), 922–923 (1976)
Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nature Structural & Molecular Biology 9(9), 646–652 (2002)
Kavraki, L.: Molecular distance measures [connexions web site] (June 2007), http://cnx.org/content/m11608/1.23/
Kullback, S.: The Kullback-Leibler distance. The American Statistician (1987)
Ramanathan, A., Agarwal, P.K., Kurnikova, M., Langmead, C.J.: An online approach for mining collective behaviors from molecular dynamics simulations. Journal of Computational Biology 17(3), 309–324 (2010)
Ramanathan, A., Yoo, J.O., Langmead, C.J.: On-the-fly identification of conformational substates from molecular dynamics simulations. Journal of Chemical Theory and Computation (2011)
Rapaport, D.C.: The art of molecular dynamics simulation. Cambridge Univ. Pr. (2004)
Shewhart, W.A.: Economic control of quality of manufactured product, vol. 509. American Society for Qualit (1980)
Smith, A., Datta, S.P., Smith, G.H., Campbell, P.N., Bentley, R., McKenzie, H.A., et al.: Oxford dictionary of biochemistry and molecular biology. Oxford University Press (OUP) (2000)
Teodoro, M.L., Phillips Jr., G.N., Kavraki, L.E.: Understanding protein flexibility through dimensionality reduction. Journal of Computational Biology 10(3-4), 617–634 (2003)
Wriggers, W., Stafford, K.A., Shan, Y., Piana, S., Maragakis, P., Lindorff-Larsen, K., Miller, P.J., Gullingsrud, J., Rendleman, C.A., Eastwood, M.P., et al.: Automated event detection and activity monitoring in long molecular dynamics simulations. Journal of Chemical Theory and Computation 5(10), 2595–2605 (2009)
Zliobaite, I.: Learning under concept drift: an overview. Technical report, Technical report, Faculty of Mathematics and Informatics, Vilnius University: Vilnius, Lithuania (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adä, I., Berthold, M.R. (2013). Detecting Events in Molecular Dynamics Simulations. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-41398-8_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41397-1
Online ISBN: 978-3-642-41398-8
eBook Packages: Computer ScienceComputer Science (R0)