Skip to main content

Detecting Events in Molecular Dynamics Simulations

  • Conference paper
Advances in Intelligent Data Analysis XII (IDA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8207))

Included in the following conference series:

  • 2422 Accesses

Abstract

We describe the application of a recently published general event detection framework, called EVE to the challenging task of molecular event detection, that is, the automatic detection of structural changes of a molecule over time. Different types of molecular events can be of interest which have, in the past, been addressed by specialized methods. The framework used here allows different types of molecular events to be systematically investigated. In this paper, we summarize existing molecular event detection methods and demonstrate how EVE can be configured for a number of molecular event types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adä, I., Berthold, M.R.: Eve: a framework for event detection. Evolving Systems 4(1), 61–70 (2013)

    Article  Google Scholar 

  2. Adcock, S.A., McCammon, J.A.: Molecular dynamics: survey of methods for simulating the activity of proteins. Chemical Reviews 106(5), 1589 (2006)

    Article  Google Scholar 

  3. Askar, A., Cetin, A.E., Rabitz, H.: Wavelet transform for analysis of molecular dynamics. The Journal of Physical Chemistry 100(49), 19165–19173 (1996)

    Article  Google Scholar 

  4. Benson, N.C., Daggett, V.: Dynameomics: Large-scale assessment of native protein flexibility. Protein Science 17(12), 2038–2050 (2008)

    Article  Google Scholar 

  5. Benson, N.C., Daggett, V.: A chemical group graph representation for efficient high-throughput analysis of atomistic protein simulations. Journal of Bioinformatics and Computational Biology 10(04) (2012)

    Google Scholar 

  6. Benson, N.C., Daggett, V.: A comparison of multiscale methods for the analysis of molecular dynamics simulations. The Journal of Physical Chemistry B 116(29), 8722–8731 (2012)

    Article  Google Scholar 

  7. Benson, N.C., Daggett, V.: Wavelet analysis of protein motion. International Journal of Wavelets, Multiresolution and Information Processing 10(04) (2012)

    Google Scholar 

  8. Bowen, J.P., Allinger, N.L.: Molecular mechanics: The art and science of parameterization. Reviews in Computational Chemistry, 81–97 (1991)

    Google Scholar 

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  10. Coutsias, E.A., Seok, C., Dill, K.A.: Using quaternions to calculate rmsd. Journal of Computational Chemistry 25(15), 1849–1857 (2004)

    Article  Google Scholar 

  11. Flocco, M.M., Mowbray, S.L.: Cα-based torsion angles: A simple tool to analyze protein conformational changes. Protein Science 4(10), 2118–2122 (1995)

    Article  Google Scholar 

  12. Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42. ACM (1999)

    Google Scholar 

  13. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 32(5), 922–923 (1976)

    Article  Google Scholar 

  14. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nature Structural & Molecular Biology 9(9), 646–652 (2002)

    Article  Google Scholar 

  15. Kavraki, L.: Molecular distance measures [connexions web site] (June 2007), http://cnx.org/content/m11608/1.23/

  16. Kullback, S.: The Kullback-Leibler distance. The American Statistician (1987)

    Google Scholar 

  17. Ramanathan, A., Agarwal, P.K., Kurnikova, M., Langmead, C.J.: An online approach for mining collective behaviors from molecular dynamics simulations. Journal of Computational Biology 17(3), 309–324 (2010)

    Article  MathSciNet  Google Scholar 

  18. Ramanathan, A., Yoo, J.O., Langmead, C.J.: On-the-fly identification of conformational substates from molecular dynamics simulations. Journal of Chemical Theory and Computation (2011)

    Google Scholar 

  19. Rapaport, D.C.: The art of molecular dynamics simulation. Cambridge Univ. Pr. (2004)

    Google Scholar 

  20. Shewhart, W.A.: Economic control of quality of manufactured product, vol. 509. American Society for Qualit (1980)

    Google Scholar 

  21. Smith, A., Datta, S.P., Smith, G.H., Campbell, P.N., Bentley, R., McKenzie, H.A., et al.: Oxford dictionary of biochemistry and molecular biology. Oxford University Press (OUP) (2000)

    Google Scholar 

  22. Teodoro, M.L., Phillips Jr., G.N., Kavraki, L.E.: Understanding protein flexibility through dimensionality reduction. Journal of Computational Biology 10(3-4), 617–634 (2003)

    Article  Google Scholar 

  23. Wriggers, W., Stafford, K.A., Shan, Y., Piana, S., Maragakis, P., Lindorff-Larsen, K., Miller, P.J., Gullingsrud, J., Rendleman, C.A., Eastwood, M.P., et al.: Automated event detection and activity monitoring in long molecular dynamics simulations. Journal of Chemical Theory and Computation 5(10), 2595–2605 (2009)

    Article  Google Scholar 

  24. Zliobaite, I.: Learning under concept drift: an overview. Technical report, Technical report, Faculty of Mathematics and Informatics, Vilnius University: Vilnius, Lithuania (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adä, I., Berthold, M.R. (2013). Detecting Events in Molecular Dynamics Simulations. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41398-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41397-1

  • Online ISBN: 978-3-642-41398-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics