Abstract
In order to study the time behavior and structural stability of the solutions of Boussinesq Paradigm Equation, two different numerical approaches are designed. The first one (A1) is based on splitting the fourth order equation to a system of a hyperbolic and an elliptic equation. The corresponding implicit difference scheme is solved with an iterative solver. The second approach (A2) consists in devising of a finite difference factorization scheme. This scheme is split into a sequence of three simpler ones that lead to five-diagonal systems of linear algebraic equations. The schemes, corresponding to both approaches A1 and A2, have second order truncation error in space and time. The results obtained by both approaches are in good agreement with each other.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Christov, C.I.: An Energy-consistent Dispersive Shallow-water Model. Wave Motion 34, 161–174 (2001)
Boussinesq, J.V.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées 17, 55–108 (1872)
Christov, C.I., Choudhury, J.: Perturbation Solution for the 2D Boussinesq Equation. Mech. Res. Commun. 38, 274–281 (2011)
Christov, C.I., Todorov, M.T., Christou, M.A.: Perturbation Solution for the 2D Shallow-water Waves. In: AIP Conference Proceedings, vol. 1404, pp. 49–56 (2011)
Christov, C.I.: Numerical Implementation of the Asymptotic Boundary Conditions for Steadily Propagating 2D Solitons of Boussinesq Type Equations. Math. Comp. Simulat. 82, 1079–1092 (2012)
Christou, M.A., Christov, C.I.: Fourier-Galerkin Method for 2D Solitons of Boussinesq Equation. Math. Comput. Simul. 74, 82–92 (2007)
Chertock, A., Christov, C.I., Kurganov, A.: Central-Upwind Schemes for the Boussinesq Paradigm Equation. Computational Science and High Performance Computing IV, NNFM 113, 267–281 (2011)
Christov, C.I., Kolkovska, N., Vasileva, D.: On the Numerical Simulation of Unsteady Solutions for the 2D Boussinesq Paradigm Equation. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 386–394. Springer, Heidelberg (2011)
Christov, C.I., Kolkovska, N., Vasileva, D.: Numerical Investigation of Unsteady Solutions for the 2D Boussinesq Paradigm Equation. 5th Annual Meeting of the Bulgarian Section of SIAM. In: BGSIAM 2010 Proceedings, pp. 11–16 (2011)
Ames, W.F.: Nonlinear Partial Differential Equations in Engineering. Academic Press (1965)
Christov, C.I., Velarde, M.G.: Inelastic interaction of Boussinesq solitons. J. Bifurcation & Chaos 4, 1095–1112 (1994)
Kolkovska, N.: Convergence of Finite Difference Schemes for a Multidimensional Boussinesq Equation. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 469–476. Springer, Heidelberg (2011)
Dimova, M., Kolkovska, N.: Comparison of Some Finite Difference Schemes for Boussinesq Paradigm Equation. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 215–220. Springer, Heidelberg (2012)
Kolkovska, N., Dimova, M.: A New Conservative Finite Difference Scheme for Boussinesq Paradigm Equation. Cent. Eur. J. Math. 10(3), 1159–1171 (2012)
Kolkovska, N.: Two Families of Finite Difference Schemes for Multidimensional Boussinesq Equation. In: AIP Conference Series, vol. 1301, pp. 395–403 (2010)
van der Vorst, H.: Iterative Krylov Methods for Large Linear Systems. Cambridge Monographs on Appl. and Comp. Math. 13 (2009)
Samarskii, A.: The Theory of Difference Schemes. Marcel Dekker Inc. (2001)
Samarskii, A.A., Nikolaev, E.: Numerical Methods for Grid Equations. Birkhäuser Verlag (1989)
Christov, C.I.: Gaussian Elimination with Pivoting for Multidiagonal Systems. Internal Report, University of Reading 4 (1994)
Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse Problems of Mathematical Physics. Walter de Gruyter (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dimova, M., Vasileva, D. (2013). Comparison of Two Numerical Approaches to Boussinesq Paradigm Equation. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2012. Lecture Notes in Computer Science, vol 8236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41515-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-41515-9_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41514-2
Online ISBN: 978-3-642-41515-9
eBook Packages: Computer ScienceComputer Science (R0)