Abstract
In order to give appropriate semantics to qualitative conditionals of the form if A then normally B, ordinal conditional functions (OCFs) ranking the possible worlds according to their degree of plausibility can be used. An OCF accepting all conditionals of a knowledge base R can be characterized as the solution of a constraint satisfaction problem. We present a high-level, declarative approach using constraint logic programming (CLP) techniques for solving this constraint satisfaction problem. In particular, the approach developed here supports the generation of all minimal solutions; this also holds for different notions of minimality which we discuss and implement in CLP. Minimal solutions are of special interest as they provide a basis for model-based inference from R.
The research reported here was partially supported by the Deutsche Forschungsgemeinschaft – DFG (grants BE 1700/7-2 and KE 1413/2-2).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beierle, C., Kern-Isberner, G.: A verified AsmL implementation of belief revision. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 98–111. Springer, Heidelberg (2008)
Beierle, C., Kern-Isberner, G.: On the computation of ranking functions for default rules - a challenge for constraint programming. In: Heiß, H.-U., Pepper, P., Schlingloff, H., Schneider, J. (eds.) Informatik 2011: Informatik schafft Communities, Beiträge der 41. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 4.-7.10.2011, Berlin (Abstract Proceedings), volume P-192 of LNI. GI (2011)
Beierle, C., Kern-Isberner, G., Koch, N.: A high-level implementation of a system for automated reasoning with default rules (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 147–153. Springer, Heidelberg (2008)
Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic logic. In: Proceedings 3th International Conference on Principles of Knowledge Representation and Reasoning KR’92, pp. 673–684 (1992)
Bourne, R.A.: Default reasoning using maximum entropy and variable strength defaults. Ph.D. thesis, Univ. of London (1999)
Bourne, R.A., Parsons, S.: Maximum entropy and variable strength defaults. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI’99, pp. 50–55 (1999)
DeFinetti, B.: Theory of Probability, vol. 1,2. Wiley, New York (1974)
Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. Artif. Intell. 142(1), 53–89 (2002)
Goldszmidt, M., Morris, P., Pearl, J.: A maximum entropy approach to nonmonotonic reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 15(3), 220–232 (1993)
Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)
Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artif. Intell. 98, 169–208 (1998)
Kern-Isberner, G.: Conditionals in nonmonotonic reasoning and belief revision. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)
Kern-Isberner, G.: Handling conditionals adequately in uncertain reasoning and belief revision. J. Appl. Non-Class. Logics 12(2), 215–237 (2002)
Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Glaser, H., Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997)
Müller, C.: Implementing default rules by optimal conditional ranking functions. B.Sc. Thesis, Department of Computer Science, FernUniversität in Hagen, Germany (2004) (in German)
Paris, J.B.: The uncertain reasoner’s companion - A mathematical perspective. Cambridge University Press, Cambridge (1994)
Paris, J.B., Vencovska, A.: In defence of the maximum entropy inference process. Int. J. Approximate Reasoning 17(1), 77–103 (1997)
Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, vol. II, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)
Weydert, E.: System JZ - How to build a canonical ranking model of a default knowledge base. In: Proceedings KR’98. Morgan Kaufmann, San Mateo (1998)
Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. CoRR, abs/1011.5332, (2010) (to appear in Theory and Practice of Logic Programming)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beierle, C., Kern-Isberner, G., Södler, K. (2013). A Declarative Approach for Computing Ordinal Conditional Functions Using Constraint Logic Programming. In: Tompits, H., et al. Applications of Declarative Programming and Knowledge Management. INAP WLP 2011 2011. Lecture Notes in Computer Science(), vol 7773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41524-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-41524-1_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41523-4
Online ISBN: 978-3-642-41524-1
eBook Packages: Computer ScienceComputer Science (R0)