Skip to main content

Faster Rumor Spreading: Breaking the logn Barrier

  • Conference paper
Distributed Computing (DISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8205))

Included in the following conference series:

Abstract

O(logn) rounds has been a well known upper bound for rumor spreading using push&pull in the random phone call model (i.e., uniform gossip in the complete graph). A matching lower bound of Ω(logn) is also known for this special case. Under the assumptions of this model and with a natural addition that nodes can call a partner once they learn its address (e.g., its IP address) we present a new distributed, address-oblivious and robust algorithm that uses push&pull with pointer jumping to spread a rumor to all nodes in only \(O(\sqrt{\log n})\) rounds, w.h.p. This algorithm can also cope with \(F= o(n/2^{\sqrt{\log n}})\) node failures, in which case all but O(F) nodes become informed within \(O(\sqrt{\log n})\) rounds, w.h.p.

This work was partially supported by the Austrian Science Fund (FWF) under contract P25214-N23 “Analysis of Epidemic Processes and Algorithms in Large Networks”.

The main result of this paper emerged from an open problem presented at Dagstuhl Seminar 13042 “Epidemic Algorithms and Processes: From Theory to Applications”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avin, C., Lotker, Z., Pignolet, Y.-A., Turkel, I.: From caesar to twitter: Structural properties of elites and rich-clubs. CoRR abs/1111.3374 (2012)

    Google Scholar 

  2. Censor-Hillel, K., Haeupler, B., Kelner, J., Maymounkov, P.: Global computation in a poorly connected world: Fast rumor spreading with no dependence on conductance. In: Proc. 44th ACM Symposium on Theory of Computing, pp. 961–970 (2012)

    Google Scholar 

  3. Chaintreau, A., Fraigniaud, P., Lebhar, E.: Opportunistic spatial gossip over mobile social networks. In: Proc. 1st Workshop on Online Social Networks, pp. 73–78 (2008)

    Google Scholar 

  4. Chung, F., Lu, L.: Connected components in random graphs with a given degree expected sequence. Annals of Combinatorics 6, 125–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deb, S., Médard, M., Choute, C.: Algebraic gossip: a network coding approach to optimal multiple rumor mongering. IEEE Transactions on Information Theory 52(6), 2486–2507 (2006)

    Article  Google Scholar 

  6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proc. 6th Annual ACM Symposium on Principles of Distributed Computing, pp. 1–12 (1987)

    Google Scholar 

  7. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: Proc. 43rd Annual ACM Symposium on Theory of Computing, pp. 21–30 (2011)

    Google Scholar 

  8. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 773–781 (2008)

    Google Scholar 

  9. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1(4), 447–460 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1642–1660 (2012)

    Google Scholar 

  11. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10(1), 57–77 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: 28th International Symposium on Theoretical Aspects of Computer Science, pp. 57–68 (2011)

    Google Scholar 

  13. Gurevich, M., Keidar, I.: Correctness of gossip-based membership under message loss. SIAM Journal on Computing 39(8), 3830–3859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haeupler, B.: Simple, fast and deterministic gossip and rumor spreading. In: Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 705–716 (2013)

    Google Scholar 

  15. Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery in distributed networks. In: Proc. 18th Annual ACM symposium on Principles of Distributed Computing, pp. 229–237 (1999)

    Google Scholar 

  16. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proc. 41st Annual Symposium on Foundations of Computer Science, pp. 565–574 (2000)

    Google Scholar 

  17. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proc. of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 482–491 (2003)

    Google Scholar 

  18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proc. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  19. Leighton, F.T.: Introduction to parallel algorithms and architectures. Morgan Kaufmann, San Francisco (1992)

    MATH  Google Scholar 

  20. Mahlmann, P., Schindelhauer, C.: Distributed random digraph transformations for peer-to-peer networks. In: Proc. 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 308–317 (2006)

    Google Scholar 

  21. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  22. Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47(1), 213–223 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raab, M., Steger, A.: “Balls into bins” - A simple and tight analysis. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Sauerwald, T.: On mixing and edge expansion properties in randomized broadcasting. Algorithmica 56(1), 51–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avin, C., Elsässer, R. (2013). Faster Rumor Spreading: Breaking the logn Barrier. In: Afek, Y. (eds) Distributed Computing. DISC 2013. Lecture Notes in Computer Science, vol 8205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41527-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41527-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41526-5

  • Online ISBN: 978-3-642-41527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics