
Exploiting Locality in Lease-Based Replicated
Transactional Memory via Task Migration

Danny Hendler1, Alex Naiman1, Sebastiano Peluso2, Francesco
Quaglia2, Paolo Romano3 and Adi Suissa1

1 Ben-Gurion University of the Negev, Israel
2 Sapienza University of Rome, Italy
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Abstract. We present Lilac-TM, the first locality-aware Distributed
Software Transactional Memory (DSTM) implementation. Lilac-TM is a
fully decentralized lease-based replicated DSTM. It employs a novel self-
optimizing lease circulation scheme based on the idea of dynamically
determining whether to migrate transactions to the nodes that own the
leases required for their validation, or to demand the acquisition of these
leases by the node that originated the transaction. Our experimental
evaluation establishes that Lilac-TM provides significant performance
gains for distributed workloads exhibiting data locality, while typically
incurring little or no overhead for non-data local workloads.

1 Introduction

Transactional Memory (TM) has emerged as a promising programming
paradigm for concurrent applications, which provides a programmer-
friendly alternative to traditional lock-based synchronization. In-
tense research work on both software and hardware TM approaches
[13,15,17,19,39] and the inclusion of TM support in world-leading multi-
processor hardware and open source compilers [20,37] extended the trac-
tion it had gained in the research community also to the mainstream
software industry.

Distributed Software TM (DSTM) systems extend the reach of the TM
model to distributed applications. An important lesson learnt by the de-
ployment of the first enterprise-class TM-based applications [6,35] is that
in order to permit scalability and meet the reliability requirements of real-
world applications, DSTMs must support data replication. As a result,
several replication techniques for distributed TM have been proposed, de-
ployed over a set of shared-nothing multi-core systems [1,2,11,36,25], as
typical of cloud computing environments.

A key challenge faced by replicated DSTMs, when compared, for in-
stance, with more conventional transactional systems (such as relational
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databases), is the large increase of the communication-to-computation ra-
tio [35]: unlike classical DBMSs, DSTMs avoid disk-based logging and rely
on in-memory data replication to achieve durability and fault-tolerance;
further, the nature of the programming interfaces exposed by DSTMs
drastically reduces the latencies of accessing/manipulating data, leading
to significant reduction of the duration of typical TM transactions (again,
when compared to typical database transactions). Overall, the reduction
of the transaction processing time results in the growth of the relative cost
of the distributed (consensus-based [16]) coordination activities required
by conventional replication protocols, and in a corresponding increase of
their relative overhead.

Model and Background We consider a classical asynchronous dis-
tributed system model [16] consisting of a set of processes Π =
{p1, . . . , pn} that communicate via message passing and can fail according
to the fail-stop (crash) model. We assume that a majority of processes is
correct and that the system ensures sufficient synchrony for implementing
a View Synchronous Group Communication Service (GCS) [10].

GCS provides two complementary services: group membership and
multicast communication. Informally, the role of the group membership
service is to provide each participant in a distributed computation with
information about which process is active (or reachable) and which is
failed (or unreachable). Such information is called a view of the group
of participants. We assume that the GCS provides a view-synchronous
primary-component group membership service [5], which maintains a sin-
gle agreed view of the group at any given time and provides processes
with information on whether they belong to the primary component.

The multicast communication service allows a member to send mes-
sages with different reliability and ordering properties to the group of
participants. We assume the availability of two communication services:
Optimistic Atomic Broadcast (OAB) [12] and Uniform Reliable Broad-
cast (URB) [16]. URB is defined by the primitives UR-broadcast(m) and
UR-deliver(m) that guaranty causal order message delivery. Three prim-
itives define OAB: OA-broadcast(m), which is used to broadcast message
m; Opt-deliver(m), which delivers message m without providing ordering
guarantees; TO-deliver(m), which delivers message m in the final total
order.

The ALC (Asynchronous Lease Certification) protocol (fully described
in [7]) is based on the lease concept. A lease is an ownership token
that grants a node temporary privileges on the management of a sub-



set of the replicated data-set. ALC associates leases with data items in-
directly through conflict classes, each of which may represent a set of
data items. This allows flexible control of the granularity of the leases
abstraction, trading off accuracy (i.e., avoidance of aliasing problems) for
efficiency (amount of information exchanged among nodes and maintained
in-memory) [3].

With ALC, a transaction is executed based on local data, avoiding
any inter-replica synchronization until it enters its commit phase. At this
stage, ALC acquires a lease for the transaction’s accessed data items,
before proceeding to validate the transaction. In case a transaction T is
found to have accessed stale data, T is re-executed without releasing ac-
quired leases. This ensures that, during T ’s re-execution, no other replica
can update any of the data items accessed during T ’s first execution,
which guarantees the absence of remote conflicts on the subsequent re-
execution of T , provided that the same set of conflict classes accessed
during T ’s first execution is accessed again.

To establish lease ownership, ALC employs the OAB communication
service. Disseminating data items of committed transactions and lease-
release messages in done using the URB service. The ownership of a
lease ensures that no other replica will be allowed to successfully validate
any conflicting transaction, making it unnecessary to enforce distributed
agreement on the global serialization order of transactions. ALC takes
advantage of this by limiting the use of atomic broadcast exclusively for
establishing the lease ownership. Subsequently, as long as the lease is
owned by the replica, transactions can be locally validated and their up-
dates can be disseminated using URB, which can be implemented in a
much more efficient manner than OAB.

Our Contributions In this paper, we present an innovative, fully de-
centralized, LocalIty-aware LeAse-based repliCated TM (Lilac-TM).
Lilac-TM aims to maximize system throughput via a distributed self-
optimizing lease circulation scheme based on the idea of dynamically de-
termining whether to migrate transactions to the nodes that own the
leases required for their validation, or to demand the acquisition of these
leases by the transaction originating node.

Lilac-TM’s flexibility in deciding whether to migrate data or trans-
actions allows it not only to take advantage of the data locality present
in many application workloads, but also to further enhance it by turning
a node N that frequently accesses a set of data items D into an attractor
for transactions that access subsets of D (and that could be committed



by N avoiding any lease circulation). This allows Lilac-TM to provide
two key benefits: (1) limiting the frequency of lease circulation, and (2)
enhancing contention management efficiency. In fact, with Lilac-TM,
conflicting concurrent transactions have a significantly higher probability
of being executed on the same node, which prevents them from incurring
the high costs of distributed conflicts. This paper makes the following
contributions:

1. We present a fully-fledged prototype of Lilac-TM, which implements
a replicated DSTM based on Java technology.

2. ALC generates a single lease request for the entire transaction data-
set. This limits the exploitation of data-locality, since another local
transaction may reuse the lease only if its data-set is a subset of an-
other lease owned by the node. To allow efficient exploitation of data-
locality by Lilac-TM, we present a new version of ALC that supports
fine-grained leases (FGL-ALC), which, instead of acquiring one lease
for the entire data-set, acquires a set of leases, one per item of the
data-set.

3. We conduct a comprehensive comparative performance analysis, eval-
uating the performance gains obtained by the new locality-aware in-
frastructure and algorithms we developed in comparison with ALC.
Our results establish that replacing ALC by FGL-ALC yields signifi-
cant performance boost for workloads possessing data locality. When
Lilac-TM is used on top of the new lease-management infrastructure,
performance gains are greatly increased, providing up to 3.2 times the
throughput of the baseline implementation.

2 Related Work

Literature results on replication of transactional systems provide solu-
tions based on protocol specifications (see, e.g., [14,22,32]), replication-
middleware designs (see, e.g., [26,30,31]) and extensions of the inner logic
of transactional systems in order to support specific replication strategies
(see, e.g., [22,42]). As shown in [41], the approaches exploiting (Opti-
mistic) Atomic Broadcast (OAB) [23] for replica coordination seem the
most promising, which motivated recent proposals that specifically target
replication of (S)TM systems to heavily rely on (O)AB-based distributed
coordination [28,29]. In particular, these approaches exploit combined us-
age of OAB and speculative execution of optimistically (early) delivered
transactional requests in order to effectively overlap computation and co-
ordination phases. On the other hand, the above approaches have been



designed and studied for the case of active replication, where update-
transactions are broadcast and processed at all the replicated sites. Com-
pared with these approaches, our proposal still aims at (partially) remov-
ing the cost of coordination from the critical-path of transaction process-
ing (since transactions can be executed and safely committed with no
preventive coordination action in case the node executing them already
holds the requested leases). However, any update transaction is run lo-
cally at an individual site (its updates are then propagated to the remote
sites), which permits better resource exploitation for update-intensive
workloads.

As for the avoidance of running update-transactions at all the
sites, several approaches exist (either AB-based [32,21,11], or 2PC-
based [34,38,33]) which exploit optimistic processing schemes coupled
with globally ordered commit-time certification. However, these ap-
proaches may suffer from non-optimal transaction-abort rates in case of
high-conflict workloads, since a (re-run) transaction may be aborted mul-
tiple times due to repeated conflicts with remotely running transactions.
This is avoided by our proposal since, once the leases on the data re-
quested by the transaction have been acquired, the transaction can be
committed if no local conflicts are detected. Further, as already discussed,
by re-using a lease across multiple transactions, the lease acquisition costs
(i.e., a distributed consensus) can be significantly amortized.

The approach in [1] allows reducing the impact of the 2PC coordina-
tion protocol by assuming that transactions’ data-set and transactional
operations are known in advance. In contrast, our proposal does not re-
quire a-priori knowledge of the set of data to be read/written by trans-
actions, and hence is suited for more general programming paradigms.

Exploitation of the access locality in distributed/replicated (S)TM
systems has also been pursued by proposals relying on data-flow [36,24].
This is done via optimized scheduling policies for the transactions (de-
pending on the target data set) and via optimized move of the ownership
of data-slices within the data-flow model (still in relation to the locality
of the accesses). Our approach has relations with these proposals in that
leases are analogous to the ownership concept (and allow the lease-owner
node to autonomously and safely take commit decisions for transactions
only touching the leased data-slices). However, the above works do not
entail any form of transaction migration as in our approach.
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Fig. 1: Middleware architecture of a Lilac-TM replica.

3 Lilac-TM

Figure 1 provides an overview of the software architecture of each replica
of Lilac-TM, highlighting in gray the modules that were either re-
designed or that were not originally present in ALC.

The top layer is a wrapper that intercepts application level calls for
transaction demarcation (i.e., to begin, commit or abort transactions),
without interfering with application accesses (read/write) to the trans-
actional data items, which are managed directly by the underlying local
STM layer. This approach allows transparent extension of the classic STM
programming model to a distributed setting.

The prototype of Lilac-TM has been built by extending the ALC
implementation shipped in the GenRSTM framework [8]. GenRSTM has
been designed to support, in a modular fashion, a range of heterogeneous
algorithms across the various layers of the software stack of a replicated
STM platform. Lilac-TM inherits this flexibility from GenRSTM. In
this work, we use TL2 [13] as the local STM layer.

The Replication Manager (RM) is the component in charge of inter-
facing the local STM layer with its replicas deployed on other system
nodes. The RM is responsible of coordinating the commit phase of both
remote and local transactions by: (i) intercepting commit-request events
generated by local transactions and triggering a distributed coordination
phase aimed at determining transactions’ global serialization order and
detecting the presence of conflicts with concurrently executing remote
transactions; and (ii) validating remote transactions and, upon successful
validation, committing them by atomically applying their write-sets in
the local STM.



At the bottom layer we find a GCS (Appia [27] in our prototype),
which, as mentioned in Section 1, provides the view synchronous mem-
bership, OAB and URB services.

The role of the Lease Manager (LM) is to ensure that no two replicas
simultaneously disseminate updates for conflicting transactions. To this
end, the LM exposes an interface consisting of two methods, getLease()
and finishedXact(), which are used by the RM to acquire/release leases
on a set of data items. This component was originally introduced in ALC
and has been re-designed in this work to support fine-grained leases. As
we explain in more detail in Section 3.1, fine-grained leases facilitate the
exploitation of locality and consequently may provide a significant reduc-
tion of lease circulation.

Lilac-TM includes two new modules that were not present in the
original ALC system. These are the Transaction Forwarder (TF) and the
Distributed Transaction Dispatcher (DTD).

As the name suggest, the TF is responsible for managing the forward-
ing of a transaction to a different node in the system. The transaction
forwarding mechanism employed by Lilac-TM represents an alternative
mechanism to the lease-based certification scheme introduced in ALC. Es-
sentially, both transaction forwarding and lease-based replication strive
to achieve the same goal: minimizing the execution rate of expensive
Atomic Broadcast-based consensus protocols to determine the outcome
of commit requests. ALC’s lease mechanism pursues this objective by al-
lowing a node that owns the leases associated with its dataset to validate
transactions and disseminate their writesets without executing consensus
protocols. Still, as described in Section 1, acquiring a lease remains an
expensive operation, as it requires the execution of a consensus protocol,
encapsulated by the OAB service.

The transaction forwarding scheme introduced in this work aims at
reducing the frequency of lease requests triggered in the system, by mi-
grating the execution of transactions to remote nodes that may process
them more efficiently. This is the case, for instance, if some node n owns
the set of leases required to certify and commit a transaction T origi-
nated on some remote node n′. In this scenario, in fact, n could validate
T locally, and simply disseminate its writeset in case of success. Transac-
tion migration may be beneficial also in subtler scenarios in which, even
though no node already owns the leases required to certify a transaction
T , if T ’s originating node were to issue a lease request on T ’s behalf,
it would be necessary to revoke leases that are being utilized with high
frequency by some other node, say n′′. In this case, it is preferable to



forward the transaction to n′′ and have n′′ acquire the lease on behalf of
T , as this would reduce the frequency of lease circulation and increase
throughput in the long term.

The decision of whether to migrate a transaction’s execution to an-
other node or to issue a lease request and process it locally is far from
being a trivial one. The transaction scheduling policy should take load
balancing considerations into account and ensure that the transaction mi-
gration logic avoids excessively overloading any subset of nodes in the sys-
tem. In Lilac-TM, the logic for determining how to manage the commit
phase of transactions is encapsulated by the DTD module. In this paper
we propose two decision policies backed by a precise and efficiently solv-
able formulation in terms of an Integer Linear Programming optimization
problem. The two proposed policies approach the problem from opposite
perspectives, by aiming to minimize the short-term versus the long-term
costs associated with the handling of transactions’ commit phase.

We describe the fine-grained lease management scheme, the TF and
the DTD in the following.

3.1 Fine-Grained Leases

In ALC, a transaction requires a single lease object, associated with its
data set in its entirety. A transaction T , attempting to commit on a node,
may reuse a lease owned by the node only if T ’s data set is a subset of
the lease’s items set. Thus, each transaction is tightly coupled with a
single lease ownership record. This approach has two disadvantages: i)
upon the delivery of a lease request by a remote node that requires even
a single data item from a lease owned by the local node, the lease must
be released, causing subsequent transactions accessing other items in that
lease to issue new lease requests; ii) if a transaction’s data set is a subset
of a union of leases owned by the local replica but is not a subset of any
of them, a new lease request must be issued. This forces the creation of
new lease requests, causing extensive use of TO-broadcast and increasing
commit latency.

To exploit data-locality, Lilac-TM does not use ALC’s LM module.
Instead, we implemented a new lease manager module that decouples
lease requests from the requesting transaction’s data set. Rather than hav-
ing a transaction acquire a single lease encompassing its entire data set,
each transaction acquires a set of fine-grained Lease Ownership Records
(LORs), one per accessed conflict class.

Fig. 2-(a) and 2-(b) illustrate a scenario in which the new LM benefits
from data-locality whereas the ALC LM cannot. They show a replicated
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TO-delivering 2 requests. (a) the original ALC protocol, and (b) our new fine-grained
leases approach.

system with 4 conflict classes (CC1, CC2, CC3, and CC4) using the orig-
inal ALC protocol and Lilac-TM (Fig. 2(a) and 2(b) respectively). The
figures illustrate the state after TO-delivering two lease requests originat-
ing from the same node: the first request is on behalf of transaction T0,
accessing CC1 and CC2, followed by a request on behalf of transaction
T1, accessing CC2, CC3, CC4. Assume that a third transaction T2, orig-
inated on the same node, requires leases on CC1, CC3 and CC4. With
Lilac-TM’s new fine-grained LM, the third request may be granted by
“piggy-backing” on existing LORs (l1,0, l3,1, l4,1). ALC’s LM, on the other
hand, must create a new lease request for CC1, CC3 and CC4, generating
additional network load and incurring larger latency.

Implementation details. ALC’s Replication Manager (RM) was not
changed. It interfaces with the LM via the getLease() and finishedX-
act() methods for acquiring and releasing leases, respectively. As in ALC,
Lilac-TM maintains the indirection level between leases and data items
through conflict classes. This allows flexible control of the leases abstrac-
tion granularity. We abstract away the mapping between a data item and
a conflict class through the getConflictClasses() primitive, taking a
set of data items as an input parameter and returning a set of conflict
classes.

As in ALC, each replica maintains one main data structure for manag-
ing the establishment/release of leases: CQ (Conflict-Queues), an array
of FIFO queues, one per conflict class. The CQ keeps track of conflict
relations among lease requests of different replicas. Each queue contains
LORs, each storing the following data: (i) proc: the address of the re-
questing replica; (ii) cc: the conflict class this LOR is associated with;
(iii) activeXacts: a counter keeping track of the number of active local



Algorithm 1: Lease Manager at process pi

1 FIFOQueue<LOR>
CQ[NumConflictClasses]={⊥, . . . ,⊥}

2 Set<LOR> GetLease(Set DataSet)
3 ConflictClass[] CC =

getConflictClasses(DataSet)
4 if (∃(Set<LOR>)S⊆CQ s.t.

∀cc∈CC(∃lor∈S : (lor.cc=cc ∧
lor.proc=pi ∧ ¬lor.blocked))) then

5 foreach lor∈S do
6 lor.activeXacts++

7 else
8 Set<LOR> S =

createLorsForConflictClasses(CC)
9 LeaseRequest req = new

LeaseRequest(pi,S)
10 OA-broadcast([LeaseRequest,req])

11 wait until isEnabled(S)
12 return S

13 void FinishedXact(Set<LOR> S)
14 Set<LOR> lorsToFree
15 foreach lor∈S do
16 lor.activeXacts−−
17 if (lor.blocked ∧ lor.activeXacts=0)

then lorsToFree=lorsToFree ∪ lor
18 if (lorsToFree 6= ∅) then

UR-broadcast([LeaseFreed,lorsToFree])

19 upon Opt-deliver([LeaseRequest, req])
from pk do

20 freeLocalLeases(req.cc)

21 upon TO-deliver([LeaseRequest, req])
from pk do

22 Set<LOR> S =
createLorsForConflictClasses(req.cc)

23 foreach lor∈S do
CQ[lor.cc].enqueue(lor)

24 upon UR-deliver([LeaseFreed, Set<LOR>
S]) from pk do

25 foreach lor∈S do
CQ[lor.cc].dequeue(lor)

26 void freeLocalLeases(ConflictClass[]
CC)

27 Set<LOR> lorsToFree
28 foreach cc ∈ CC do
29 if ∃lor in CQ[cc] s.t. lor.proc=pi

then
30 lor.blocked=true
31 if (CQ[lor.cc].isFirst(lor) ∧

lor.activeXacts=0) then
32 lorsToFree=lorsToFree ∪

lor
33 if (lorsToFree 6= ∅) then

UR-broadcast([LeaseFreed,lorsToFree])

34 boolean isEnabled(Set<LOR> S)
35 return ∀lor∈S : CQ[lor.cc].isFirst(lor)

36

transactions associated with this LOR, initialized to 1 when the LOR is
created; and (iv) blocked : a flag indicating whether new local transac-
tions can be associated with this LOR - this flag is initialized to false when
the LOR is created (in the createLorsForConflictClasses primitive),
and set to true as soon as a remote lease request is received.

Algorithm 1 presents the pseudo-code of Lilac-TM’s LM. The
method getLease() is invoked by the RM once a transaction reaches
its commit phase. The LM then attempts to acquire leases for all items
in the committing transaction’s data set. It first determines, using the
getConflictClasses() method, the set of conflict classes associated with
the transaction’s data set (line 3). It then checks (in line 4) whether CQ
contains a set S of LORs such that i) the LORs were issued by pi, and
ii) additional transactions of pi may still be associated with these LORs
(this is the case for each LOR owned by the current node that is not
blocked). If the conditions of line 4 are satisfied, the current transaction



can be associated with all LORs in S (lines 5–6). Otherwise, a new lease
request, containing the set of LORs, is created and is disseminated using
OAB (lines 7–10). In either case, pi waits in line 11 until S is enabled, that
is, until all the LORs in S reach the front of their corresponding FIFO
queues (see the isEnabled() method). Finally, the method returns S and
the RM may proceed validating the transaction.

When a transaction terminates, the RM invokes the finishedXact()
method. This method receives a set of LORs and decrements the number
of active transactions within each record (line 16). Every blocked LOR
that is not used by local transactions is then released by sending a single
message via the UR-broadcast primitive (lines 17–18).

Upon an Opt-deliver event of a remote lease request req, pi invokes the
freeLocalLeases() method, which blocks all LORs owned by pi that
are part of req by setting their blocked field (line 30). Then, all LORs that
are blocked and are no longer in use by local transactions are released by
sending a single UR-broadcast message (lines 31–33). Other LORs required
by req that have local transactions associated with them (if any) will be
freed when the local transactions terminate. Blocking LORs is required
to ensure the fairness of the lease circulation scheme. In order to prevent
a remote process pj from waiting indefinitely for process pi to relinquish
a lease, pi is prevented from associating new transactions with existing
LORs as soon as a conflicting lease request from pj is Opt-delivered at pi
(as described above).

Upon a TO-deliver event of a lease request req (line 21), pi creates the
corresponding set of LORs, and enqueues these records in their conflict
class queues. The logic associated with a UR-deliver event (line 24) re-
moves each LOR specified in the message from its corresponding conflict
class queue.

3.2 Transaction Forwarder

The Transaction Forwarder is the module in charge of managing the pro-
cess of migrating transactions between nodes. As already mentioned, in
Lilac-TM transactions are first locally executed and validated by the
node that originated them. Unlike ALC, if the set S of conflict classes
accessed by a transaction T is not already owned by its origin node, say
n, in Lilac-TM the DTD may decide to avoid requesting leases for T ,
and forward its execution to a different node n′ instead. In this case node
n′ becomes responsible for finalizing the commit phase of the transaction.
This includes, first of all, establishing leases on S on behalf of transaction
T . This can be achieved avoiding any distributed coordination, in case



n′ already owns all the leases required by T ′. Otherwise, if some of the
leases requested by T ′ are not owned by n′, n′ has to issue lease requests
on behalf of T via the OAB service.

Next we can use a remote validation optimization and let n′ perform
T ’s final validation upon arrival (without re-executing T ) in order to de-
tect whether T has conflicts with concurrently committed transactions.4

In case of successful validation, T can be simply committed, as in ALC,
by disseminating a Commit message via the UR-Broadcast. Additionally,
in Lilac-TM, this has the effect of unblocking the thread that requested
the commit of T on node n. On the other hand, if T fails its final valida-
tion, it is re-executed on node n′ until it can be successfully committed,
or it fails for a pre-determined number of attempts. In this latter case,
the origin node is notified of the abort of T , and the user application is
notified via an explicit exception type. Note that, in order to commit the
transaction associated with the re-execution of T , which we denote as T ′,
n′ must own the set of conflict classes accessed by T ′. This may not be
necessarily true, as T ′ and T may access different sets of conflict classes.
In this case, Lilac-TM prevents a transaction from being forwarded an
arbitrary number of times, by forcing n′ to issue a lease request and ac-
quire ownership of the leases requested by T ′.

It must be noted that, in order to support the transaction forwarding
process, the programming model exposed by Lilac-TM has to undergo
some minor adaptations compared, e.g., with the one typically provided
by non-replicated TM systems. Specifically, Lilac-TM requires that the
transactional code is replicated and encapsulated by an interface that
allows to seamlessly re-execute transactions that were originated at dif-
ferent nodes. To this end, the transactional logic is wrapped in an object
whose attributes encode its input parameters, and which exposes meth-
ods supporting its correct serialization and de-serialization, and allowing
to trigger the execution of the transactional logic, possibly on a remote
node (similarly to RMI). In order to maximize the generality and flexibil-
ity of the programming model, the method that supports the execution of
a transaction is allowed to return a (typed) result. In case of re-execution
on node n′ of a transaction T forwarded by node n, the transaction’s
result is piggybacked on the commit message. This allows to inform the
application thread that originated the execution of T on n about the re-

4 In order to use this remote validation optimization, the TF module must be aug-
mented with a TM-specific validation procedure and append the appropriate meta-
data to forwarding messages. TM-specific adaptation and overhead can be avoided
by simply always re-executing the forwarded transaction once it is migrated to n′.



sult generated by T on n′ (which may be different from the one originally
produced by T on n).

3.3 Distributed Transaction Dispatching

The DTD module allows encapsulating arbitrary policies to determine
whether to process the commit of a transaction locally, by issuing lease
requests if required, or to migrate its execution to a remote node. In the
following we refer to this problem as the transaction migration problem.
This problem can be formulated as an Integer Linear Programming (ILP)
problem as follows:

(1) min
∑

i∈Π Ni · C(i, S)
(2) subject to:

∑
i∈Π Ni = 1 (3) CPUi ·Ni < maxCPU

The above problem formulation aims at determining an assignment
of the binary vector N (whose entries are all equal to 0 except for one,
whose index specifies the selected node) minimizing a generic cost function
C(i, S) that expresses the cost for node i to be selected for managing the
commit phase of a transaction accessing the conflict classes in the set S.
The notation used in the above constraint problem and in the functions
defined in the following is summarized in Table 1.

The optimization problem specifies two constraints. Constraint (2)
expresses the fact that a transaction can be certified by exactly a single
node in Π. Constraint (3) is used to avoid load imbalance between nodes.
It states that a node i should be considered eligible for re-scheduling only
if its CPU utilization (CPUi) is below a maximum threshold (maxCPU).

We now derive two different policies for satisfying the above ILP for-
mulation, which are designed to minimize the long-term and the short-
term impact of the decision on how to handle a transaction. We start by
defining the cost function LC(i, S), which models the long-term cost of
selecting node i as the node that will execute the transaction as the sum
of the frequency of accesses to the conflict classes in S by every other
node j 6= i ∈ Π:

LC(i, S) =
∑
x∈S

∑
j∈Π∨j 6=i

F(j, x)

where F(j, x) is defined as the per time-unit number of transactions orig-
inated on node j that have object x in their dataset. The first policy,
which we term long-term policy, is obtained by setting the generic cost
function C(i, S) in (1) to LC(i, S). This bases the decision on where to
execute transactions on the statistics, collected over time, expressed by
the frequencies F(j, x).



In order to derive the the short-term policy, we first define the function
SC(i, S), which expresses the immediate costs induced at the GCS level
by different choices of where to execute a transaction:

SC(i, S) =


cURB if i = O ∧ ∀x ∈ S : L(i, x) = 1

cAB + 2cURB if i = O ∧ ∃x ∈ S : L(i, x) = 0
cp2p + cAB + 2cURB if i 6= O ∧ ∃x ∈ S : L(i, x) = 0

cp2p + cURB if i 6= O ∧ ∀x ∈ S : L(i, x) = 1

where the first case captures the fact that a single URB is required if the
node that originated the transaction already owns all the leases required
by it and the transaction is not forwarded; the second case expresses
the cost to request one or more leases on the node that originated the
transaction, in case it does not own all required leases and the transaction
is not forwarded; the third case expresses the cost in a scenario in which a
transaction is forwarded to a node that does not own all required conflict
classes; and the last case expresses the cost in a scenario in which the
transaction is forwarded to a node that already owns the leases for all
required conflict classes.

Π the set of nodes in the system
F(i, x) access frequency from node i to object x
L(i, x) equals 1 if node i owns a lease on object x, 0 otherwise
Ni Ni = 1 if the transaction will be certified

(after having acquired all leases) by node i, 0 otherwise
Ci,S the cost of selecting node i to commit a tx.

that accesses the conflict classes in the set leaselSet
cURB cost of performing URB
cAB cost of performing AB
cp2p cost of performing point to point communication
O the identity of the node that originated the transaction

maxCPU the maximum CPU utilization for a node
CPUi the CPU utilization at node i

Table 1: Parameters used in the ILP formulation.

The short-term policy is obtained by setting the generic cost function
C(i, S) in (1) to SC(i, S).

It is easily seen that the ILP of Equation 1 can be solved in O(|Π|)
time regardless of whether the long-term or the short-term policy is used.
The statistics required for the computation of the long-term policy are



computed by gathering the access frequencies of nodes to conflict classes.
This information is piggybacked on the messages exchanged to commit
transactions/request leases. A similar mechanism is used for exchanging
information on the CPU utilization of each node. For the short term
policy, we quantify the cost of the P2P, URB and OAB protocols in
terms of their communication-steps latencies (which equal 1, 2, and 3,
respectively).

4 Experimental Evaluation

In this section, we compare the performance of Lilac-TM’s fine-grained
leases and transaction migration mechanisms with that of the baseline
ALC protocol. Performance is evaluated using two benchmarks: a vari-
ant of the Bank benchmark [9,18] and the TPC-C benchmark [40]. We
compare the following algorithms: ALC (using the implementation eval-
uated in [8]), FGL (ALC using the fine-grained leases mechanism), MG-
ALC (ALC extended with the transaction migration mechanism), and
two variants of Lilac-TM (transaction migration on top of ALC using
fine-grained leases), using the short-term (Lilac-TM-ST) and the long-
term (Lilac-TM-LT) policies, respectively. Both ALC and Lilac-TM
are implemented in Java and are publicly available [4].

All benchmarks were executed on a cluster of 4 replicas, each compris-
ing an Intel Xeon E5506 CPU at 2.13 GHz and 32 GB of RAM, running
Linux and interconnected via a private Gigabit Ethernet.

Partitioned Bank Benchmark. The Bank benchmark [9,18] is a well-
known transactional benchmark that emulates a bank system comprised
of a large number of client accounts. We extended the Bank benchmark
with support for various types of read-write and read-only transactions,
for generating more realistic transactional workloads. A read-write trans-
action performs transfers between randomly selected pairs of accounts.
A read-only transaction reads the balance of a set of randomly-selected
client accounts. Workloads consist of 50% read-write transactions and
50% read-only transactions of varying lengths.

We introduce data locality in the Bank benchmark as follows. Ac-
counts are split into partitions such that each partition is logically associ-
ated with a distinct replica and partitions are evenly distributed between
replicas. A transaction accesses accounts of a single partition. A trans-
action originated on replica r accesses accounts of a (randomly selected)
partition associated with r with probability P , and accounts from an-



other (randomly selected) remote (associated with another replica) par-
tition with probability 1−P . Larger values of P generate workloads that
are characterized by higher data-locality and by smaller inter-replica con-
tention.

For the Bank application, the optimal migration policy is to forward
each transaction t to the replica with which the partition accessed by
t is associated. We therefore implement and evaluate a third variant of
Lilac-TM (called Lilac-TM-OPT) using this optimal policy.5

Figure 3(a) shows the throughput (committed transactions per sec-
ond) of the algorithms we evaluate on workloads generated by the bank
application with P varying between 0% to 100%. We report in the follow-
ing results obtained running 2 threads per node. Results using 4 threads
per node are similar and are reported in the appendix.

Comparing ALC and FGL, Figure 3(a) shows that, while ALC’s
throughput remains almost constant for all locality levels, FGL’s per-
formance dramatically increases when locality rises above 80%. This is
explained by Figure 3(b), that shows the Lease Reuse Rate, defined as
the ratio between the number of read-write transactions which are piggy-
backed on existing leases and the total number of read-write transac-
tions.6 A higher lease reuse rate results in fewer lease requests, which
reduces in turn the communication overhead and the latency caused by
waiting for leases. FGL’s lease reuse rate approaches one for high locality
levels, which enables FGL and FGL-based migration policies to achieve
up to 3.2 times higher throughput as compared with ALC and MG-ALC.

When locality is lower than 80%, the FGL approach yields throughput
that is comparable to ALC. Under highly-contended low-locality work-
loads, FGL’s throughput is even approximately 10%-20% lower than that
of ALC. This is because these workloads produce a growing demand for
leases from all nodes. FGL releases the leases in fine-grained chunks, which
results in a higher load on URB-communication as compared with ALC.

The adverse impact of low-locality workloads on transaction migra-
tion policies, however, is much lower. Migrating transactions to replicas
where leases might already be present (or will benefit from acquiring it),
increases the lease reuse rate, which increases throughput in turn. In-
deed, as shown by Figure 3(a), Lilac-TM achieves speed-up of between
40%-100% even for low-locality workloads (0%-60%) in comparison with
ALC. For high-locality workloads, both FGL and Lilac-TM converge to
similar performance, outperforming ALC by a factor of 3.2.

5 Our MG-ALC implementation also uses this optimal migration policy.
6 Read-only transactions never request leases.



Fig. 3: Bank Benchmark

Comparing the performance of ALC and MG-ALC shows that using
transaction migration on top of ALC does not improve the lease reuse rate
as compared with the baseline ALC. This is because migration only helps
if it is used on top of the fine-grained leases mechanism. The slightly lower
throughput of MG-ALC in comparison to ALC is due to the overhead of
the TF mechanism.

Next we evaluate the ability of Lilac-TM to cope with load imbal-
ance. To this end, we set the benchmark to access with 20% probability
a single partition, p, from all the nodes, except for the single node, say
n, associated with p, which accesses only p. In these settings, with all the
considered policies, n tends to attract all the transactions that access p.
At second 40 of the test, we overload node n by injecting external, CPU-
intensive jobs. The plots in Fig. 3(c) compare the throughput achieved by
Lilac-TM with and without the mechanism for overload control (imple-
menting Inequality (3)), and with both the long-term and the short-term
policies. The data highlights the effectiveness of the proposed overload
control mechanism, which significantly increases system throughput. In
fact, the schemes that exploit statstics on CPU utilization (Lilac-TM-
ST and Lilac-TM-LT) react in a timely manner to the overload of n by
avoiding further migrating their transactions towards it, and consequently
achieve throughput that is about twice that of uninformed policies (Lilac-
TM-ST-NoCtrl and Lilac-TM-LT-NoCtrl).

TPC-C. We also ported the TPC-C benchmark and evaluated Lilac-
TM using it. The TPC-C benchmark is representative of OLTP workloads
and is useful to assess the benefits of our proposal even in the context
of complex workloads that simulate real world applications. It includes a
wider variety of transactions that simulate an application for a whole-sale
supplier that supplies items (grouped in stocks) from a set of warehouses
to customers within sales districts. We ported two of the five transactional
profiles offered by TPC-C, namely the Payment and the New Order trans-



actional profiles, that exhibit high conflict rate scenarios and long running
transactional workloads, respectively. For this benchmark we inject trans-
actions to the system by emulating a load balancer operating according
to a geographically-based policy that forwards requests on the basis of
the requests’ geographic origin: in particular requests sent from a certain
geographic region are dispatched to the node that is responsible for the
warehouses associated with the users of that region. To generate more
realistic scenarios we also assume that the load balancer can do mistakes
by imposing that with probability 0.2 a request sent from a certain region
is issued by users associated with warehouses that do not belong to that
region.
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In Figure 4 we present the through-
put obtained by running a workload with
95% Payment transactions and 5% New
Order transactions; moreover in this case
we show the throughput varying over time
in order to better assess the convergence
of the reschedule policies. We first notice
that even in this complex scenario FGL
performs better than ALC due to bet-
ter exploitation of the application, and a
higher leases reuse rate. In addition, using
the migration mechanism, driven by either
the short term (ST) or the long term (LT)
policy, over FGL, achieves speedups of be-
tween 1.2 and 1.5 when compared to ALC.
However, unlike the Bank Benchmark, in this case the ST policy achieves
only minor gains compared to the LT policy, due to TPC-C’s transactional
profiles that generate more complex access patterns. In fact, even when
the data set is partitioned by identifying each partition as a warehouse
and all the objects associated with that warehouse, TPC-C’s transac-
tions may access more than one partition. This reduces the probability
that the ST policy can actually trigger a reschedule for a transaction on a
node that already owns all the leases necessary to validate/commit that
transaction. On the other hand the LT policy can exploit application lo-
cality thus noticeably reducing lease requests circulation, i.e. the number
of lease requests issued per second.



5 Conclusions

In this paper we introduced Lilac-TM, a fully decentralized, LocalIty-
aware LeAse-based repliCated TM (Lilac-TM). Lilac-TM exploits a
novel, self-optimizing lease circulation scheme that provides two key ben-
efits: (1) limiting the frequency of lease circulation, and (2) enhancing
the contention management efficiency, by increasing the probability that
conflicting transactions are executed on the same node.

By means of an experimental evaluation based on both synthetic and
realistic, complex benchmarks, we have shown that Lilac-TM can yield
significant speed-ups, reaching peak gains of up to 3.2 times with respect
to state of the art lease-based replication protocols.
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A Additional experimental results

In this section we present evaluation results obtained using 4 threads per
node with both the Bank benchmark and the TPC-C benchmark, omitted
from the main body of the paper.

We start by analyzing the results of the Bank benchmark. Although
the results are fairly similar with those obtained using two threads per
node, there are nevertheless two noticeable differences. First, it can see
that when locality exceeds 80%, both Lilac-TM and FGL enjoy a higher
speed-up (in comparison with the baseline ALC) for 4 threads as com-
pared with 2 threads.

As described in the main body of the paper, unlike Lilac-TM (or
FGL), in ALC threads spend much of their time obtaining leases even
in high locality scenarios. In fact, even though in these scenarios nodes
globally own leases associated with most of the data set accessed by their
transactions, they cannot successfully reuse the leases across transactions,
due to the coarse granularity of the lease management scheme employed
by ALC. Indeed, in high locality scenarios the achieved speed-up is even
higher than for two threads, obtaining up to 4.8 times higher throughput
with respect to ALC and MG-ALC.

The second difference is that when locality is under 80%, 4 threads are
better able to compensate for the URB-communication overhead caused
by releasing the leases in fine-grained chunks. While only some of the
threads pay the price of requesting the leases, the others are able to
simply piggy-back the acquired leases and commit, thus eliminating the
gap between FGL and ALC and increasing the speed-up for Lilac-TM.

For the TPC-C benchmark we show the throughput (committed trans-
actions per second) obtained by running the same workload adopted for
the configuration of 2 threads per node (i.e. 95% of Payment transactions
and 5% of New Order transactions). Also in this case, it is noticeable that
the combination of the migration mechanism and the fine-grain lease man-
agement approach outperforms the baseline ALC, achieving a maximum
speed-up of 1.5 when adopting the long-term policy. However, this is not
the case for the short-term policy, which performs even worse than the
baseline. This stems from the fact that the probability to actually find all
the necessary leases to validate/commit a transaction during a migration
is very low due to the higher logical contention. This means that even if
the policy considers a node N as a good candidate for the migration of a
transaction T (because it forecasts that N will have all the leases neces-
sary to validate/commit T), the execution of T on N could be followed



by an additional lease request since N may not have the required leases
anymore because these were already granted to other nodes.
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Fig. 5: 4 threads per replica
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