Skip to main content

Model-Driven Approach for Supporting the Mapping of Parallel Algorithms to Parallel Computing Platforms

  • Conference paper
Model-Driven Engineering Languages and Systems (MODELS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8107))

  • 2573 Accesses

Abstract

The trend from single processor to parallel computer architectures has increased the importance of parallel computing. To support parallel computing it is important to map parallel algorithms to a computing platform that consists of multiple parallel processing nodes. In general different alternative mappings can be defined that perform differently with respect to the quality requirements for power consumption, efficiency and memory usage. The mapping process can be carried out manually for platforms with a limited number of processing nodes. However, for exascale computing in which hundreds of thousands of processing nodes are applied, the mapping process soon becomes intractable. To assist the parallel computing engineer we provide a model-driven approach to analyze, model, and select feasible mappings. We describe the developed toolset that implements the corresponding approach together with the required metamodels and model transformations. We illustrate our approach for the well-known complete exchange algorithm in parallel computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moore, G.E.: Cramming More Components Onto Integrated Circuits. Proceedings of the IEEE 86(1), 82–85 (1998)

    Article  Google Scholar 

  2. Aizcorbe, A.M., Kortum, S.S.: Moore’s Law and the Semiconductor Industry: A Vintage Model. Scandinavian Journal of Economics 107(4), 603–630 (2005)

    Article  Google Scholar 

  3. Frank, M.P.: The physical limits of computing. Computing in Science & Engineering 4(3), 16–26 (2002)

    Article  Google Scholar 

  4. Amdahl, G.M.: Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. Reprinted from the AFIPS Conference Proceedings, Atlantic City, N.J., April 18-20, vol. 30, pp. 483–485. AFIPS Press, Reston (1967); when Dr. Amdahl was at International Business Machines Corporation, Sunnyvale, California. IEEE Solid-State Circuits Newsletter 12(3), 19–20 (Summer 2007)

    Google Scholar 

  5. Gustafson, J.L.: Reevaluating Amdahl’s law. Communications of the ACM 31(5), 532–533 (1988)

    Article  Google Scholar 

  6. Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. Computer 41(7), 33–38 (2008)

    Article  Google Scholar 

  7. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Commun. ACM 33(5), 539–543 (1990)

    Article  Google Scholar 

  8. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S., Yelick, K., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hiller, J., Keckler, S., Klein, D., Williams, R.S., Yelick, K.: Exascale Computing Study: Technology Challenges in Achieving Exascale Systems. DARPA (2008)

    Google Scholar 

  9. İmre, K.M., Baransel, C., Artuner, H.: Efficient and Scalable Routing Algorithms for Collective Communication Operations on 2D All–Port Torus Networks. International Journal of Parallel Programming 39(6), 746–782 (2011) ISSN: 0885-7458

    Article  Google Scholar 

  10. Kim, S.-G., Maeng, S.-R., Cho, J.-W.: Complete exchange algorithms in wormhole-routed torus networks: a divide-and-conquer strategy. In: Proceedings of the Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN 1999), pp. 296–301 (1999)

    Google Scholar 

  11. Suh, Y.-J., Shin, K.G.: All-to-all personalized communication in multidimensional torus and mesh networks. IEEE Transactions on Parallel and Distributed Systems 12(1), 38–59 (2001)

    Article  Google Scholar 

  12. Tsai, Y.J., McKinley, P.K.: An extended dominating node approach to collective communication in all-port wormhole-routed 2D meshes. In: Proceedings of the Scalable High-Performance Computing Conference, pp. 199–206 (1994)

    Google Scholar 

  13. Chien, A.A., Konstantinidou, M.: Workloads and Performance Metrics for Evaluating Parallel Interconnects, pp. 23–27. Morgan-Kaufmann (Summer-Fall 1994)

    Google Scholar 

  14. Zhang, X.D., Yan, Y., He, K.Q.: Latency Metric: An Experimental Method for Measuring and Evaluating Parallel Program and Architecture Scalability. Journal of Parallel and Distributed Computing 22(3), 392–410 (1994) ISSN 0743-7315, 10.1006/jpdc.1994.1100

    Google Scholar 

  15. Talia, D.: Models and Trends in Parallel Programming. Parallel Algorithms and Applications 16(2), 145–180 (2001)

    Article  MATH  Google Scholar 

  16. Baransel, C., İmre, K.M.: A Parallel Implementation of Strassen’s Matrix Multiplication Algorithm for Wormhole-Routed All-Port 2D Torus Networks. Journal of Supercomputing 62(1), 486–509 (2012)

    Google Scholar 

  17. Peters, J.G., Syska, M.: Circuit-Switched Broadcasting in Torus Networks. IEEE Transactions on Parallel and Distributed Systems 7(3), 246–255 (1996)

    Article  Google Scholar 

  18. Lenstra, H.W., Pomerance, C.: A Rigorous Time Bound for Factoring Integers. Journal of the American Mathematical Society 5(3), 483–516 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Object Management Group (OMG), Model Driven Architecture (MDA), ormsc/2001-07-01 (2001)

    Google Scholar 

  20. MPI: A Message-Passing Interface Standart, version 1.1 (2013), http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

  21. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45(3), 621–645 (2006)

    Article  Google Scholar 

  22. ATL: ATL Transformation Language (2013), http://www.eclipse.org/atl/

  23. Xpand, Open Architectureware (2013), http://wiki.eclipse.org/Xpand

  24. Shende, S.S., Malony, A.D.: The Tau Parallel Performance System. Int. J. High Perform. Comput. Appl. 20(2), 287–311 (2006)

    Article  Google Scholar 

  25. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel programs. Concurrency and Computation: Practice and Experience 22(6), 685–701 (2010)

    Google Scholar 

  26. Krell Institute, Open|Speedshop (2013), http://www.openspeedshop.org

  27. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Further Improving the Scalability of the Scalasca Toolset. In: Jónasson, K. (ed.) PARA 2010, Part II. LNCS, vol. 7134, pp. 463–473. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Rudy, G., Khan, M.M., Hall, M., Chen, C., Chame, J.: A programming language interface to describe transformations and code generation. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 136–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Han, T.D., Abdelrahman, T.S.: hiCUDA: High-Level GPGPU Programming. IEEE Transactions on Parallel and Distributed Systems 22(1), 78–90 (2011)

    Article  Google Scholar 

  30. Gamatié, A., Le Beux, S., Piel, É., Ben Atitallah, R., Etien, A., Marquet, P., Dekeyser, J.-L.: A Model-Driven Design Framework for Massively Parallel Embedded Systems. ACM Transactions on Embedded Computing Systems 10(4), 1–36 (2011)

    Article  Google Scholar 

  31. Object Management Group. A UML profile for MARTE (2009), http://www.omgmarte.org

  32. Sussman, A.: Model-driven mapping onto distributed memory parallel computers. In: Proceedings Supercomputing 1992, pp. 818–829 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arkın, E., Tekinerdogan, B., İmre, K.M. (2013). Model-Driven Approach for Supporting the Mapping of Parallel Algorithms to Parallel Computing Platforms. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds) Model-Driven Engineering Languages and Systems. MODELS 2013. Lecture Notes in Computer Science, vol 8107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41533-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41533-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41532-6

  • Online ISBN: 978-3-642-41533-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics