Skip to main content

Graph Algorithmic Techniques for Biomedical Image Segmentation

  • Chapter
  • First Online:
Advanced Computational Approaches to Biomedical Engineering
  • 1662 Accesses

Abstract

After presenting an introduction to a more traditional graph-based 2D segmentation technique, this chapter presents an in-depth overview of two state-of-the-artgraph-based methods for segmenting three-dimensional structures in medical images: graph cuts and the Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces (LOGISMOS) approach. In each case, an overview of the underlying optimization problem is presented first (i.e., the formulation of an energy/cost function and the specified constraints), followed by the graph-based representation of the optimization problem which enables the globally optimal solution to be found in polynomial time. In particular, in the 2D case, a 2D boundary segmentation optimization problem is transformed into that of finding a minimum-cost path in a graph. In the graph-cuts approach, a 3D object/background labeling problem is transformed into that of finding a minimum s–t cut in a graph, and in the LOGISMOS approach, a single or multiple 3D surface segmentation problem is first transformed into that of finding a minimum-cost closure in a graph (which is further transformed into finding a minimum s–t cut in a graph). For each approach, example applications and extensions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boykov, Y., Jolly, M.-P.: Interactive organ segmentation using graph cuts. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2000. Lecture Notes in Computer Science, vol. 1935, pp. 276–286. Springer, Berlin (2000)

    Google Scholar 

  2. Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision (ICCV) 2001, pp. 105–112. IEEE, New York (2001)

    Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  5. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  6. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  7. Wu, X., Chen, D.Z.: Optimal net surface problems with applications. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 2380, pp. 775–775. Springer, Berlin (2002)

    Google Scholar 

  8. Wu, X., Chen, D.Z., Li, K., Sonk, M.: The layered net surface problems in discrete geometry and medical image segmentation. Int. J. Comput. Geom. Appl. 17(3), 261–296 (2007)

    Article  MATH  Google Scholar 

  9. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images—a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006)

    Article  Google Scholar 

  10. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)

    Article  Google Scholar 

  11. Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D.D., Sonka, M.: LOGISMOS—layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans. Med. Imaging 29(12), 2023–2037 (2010)

    Article  Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT, Cambridge (2001)

    MATH  Google Scholar 

  13. Delong, A., Boykov, Y.: Globally optimal segmentation of multi-region objects. In: International Conference on Computer Vision (ICCV), Tokyo, pp. 285–292 (October 2009)

    Google Scholar 

  14. Song, Q., Bai, J., Han, D., Bhatia, S., Sun, W., Rockey, W., Bayouth, J., Buatti, J., Wu, X.: Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans. Med. Imaging 32(9), 1685–1697 (2013)

    Article  Google Scholar 

  15. Mu, Y., Zhou, B.: Co-segmentation of image pairs with quadratic global constraint in MRFs. In: Proceedings of the 8th Asian Conference on Computer Vision, Part II, Tokyo, pp. 837–846 (2007)

    Google Scholar 

  16. Mukherjee, L., Singh, V., Dyer, C.R.: Half-integrality based algorithms for cosegmentation of images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, pp. 2028–2035 (2009)

    Google Scholar 

  17. Hochbaum, D.S., Singh, V.: An efficient algorithm for co-segmentation. In: Proceedings of the International Conference on Computer Vision, Kyoto, pp. 269–276 (2009)

    Google Scholar 

  18. Rother, C., Minka, T., Bake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching—incorporating a global constraint into MRFs. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, pp. 993–1000 (2006)

    Google Scholar 

  19. Batra, D., Kowdle, A., Parikh, D., Luo, J., Chen, T.: Interactively co-segmentating topically related images with intelligent scribble guidance. Int. J. Comput. Vis. 93(3), 273–292 (2011)

    Article  Google Scholar 

  20. Thedens, D.R., Skorton, D.J., Fleagle, S.R.: A three-dimensional graph searching technique for cardiac border detection in sequential images and its application to magnetic resonance image data. In: Proceedings of Computers in Cardiology, Chicago, pp. 57–60 (1990)

    Google Scholar 

  21. Thedens, D.R., Skorton, D.J., Fleagle, S.R.: Methods of graph searching for border detection in image sequences with applications to cardiac magnetic resonance imaging. IEEE Trans. Med. Imaging 14(1), 42–55 (1995)

    Article  Google Scholar 

  22. Boykov, Y., Veksler, O., Zabih, R.: Markov Random Fields with efficient approximations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, pp. 648–655 (1998)

    Google Scholar 

  23. Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, pp. 125–131 (1998)

    Google Scholar 

  24. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary image. J. R. Stat. Soc. Ser. B 51, 271–279 (1989)

    Google Scholar 

  25. Hochbaum, D.S.: An efficient algorithm for image segmentation, Markov random fields and related problems. J. ACM 48(4), 686–701 (2001)

    MATH  MathSciNet  Google Scholar 

  26. Glocker, B., Komodakis, N., Paragios, N., Glaser, C., Tziritas, G., Navab, N.: Primal/dual linear programming and statistical atlases for cartilage segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI 2007). Lecture Notes in Computer Science, vol. 4792, pp. 536–543. Springer, Berlin (2007)

    Google Scholar 

  27. Roy, S., Cox, I.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: Proceedings of International Conference on Computer Vision (ICCV), Bombay, pp. 492–499 (1998)

    Google Scholar 

  28. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proceedings of International Conference on Computer Vision (ICCV), Vancouver, pp. 508–515, July 2001

    Google Scholar 

  29. Glocker, B., Komodakis, N., Paragios, N., Tziritas, G., Navab, N.: Inter and intra-modal deformable registration: continuous deformations meet efficient optimal linear programming. In: Proceedings of the 20th International Conference on Information Processing in Medical Imaging (IPMI). Lecture Notes in Computer Science, vol. 4584, pp. 408–420. Springer, Berlin (2006)

    Google Scholar 

  30. Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, New York City, pp. 14–23 (1999)

    Google Scholar 

  31. Archer, A., Fakcharoenphol, J., Harrelson, C., Krauthgamer, R., Talvar, K., Tardos, E.: Approximate classification via earthmover metrics. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, pp. 1079–1089 (2004)

    Google Scholar 

  32. Chuzhoy, J., Naor, S.: The hardness of metric labeling. SIAM J. Comput. 36(5), 1376–1386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chekuri, C., Khanna, A., Naor, J., Zosin, L.: A linear programming formulation and approximation algorithms for the metric labeling problem. SIAM J. Discrete Math. 18(3), 608–625 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gupta, A., Tardos, E.: Constant factor approximation algorithms for a class of classification problem. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), Portland, pp. 652–658 (2000)

    Google Scholar 

  35. Dubes, R., Jain, A.: Random field models in image analysis. J. Appl. Stat. 16, 131–164 (1989)

    Article  Google Scholar 

  36. Picard, J.C.: Maximal closure of a graph and applications to combinatorial problems. Manag. Sci. 22, 1268–1272 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  37. Song, Q., Bai, J., Garvin, M.K., Sonka, M., Buatti, J., Wu, X.: Optimal multiple surface segmentation with shape and context priors. IEEE Trans. Med. Imaging 32(2), 376–386 (2013)

    Article  Google Scholar 

  38. Ahuja, R.K., Hochbaum, D., Orlin, J.B.: A cut based algorithm for the convex dual of the minimum cost network flow problem. Algorithmica 39, 189–208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1987)

    Article  Google Scholar 

  40. Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855–867 (1990)

    Article  Google Scholar 

  41. Amini, A.A., Weymouth, T.E., Jain, R.C.: On active contour models and balloons. CVGIP: Image Underst. 53(2), 211–218 (1991)

    Article  Google Scholar 

  42. Amini, A.A., Weymouth, T.E., Jain, R.C.: A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Comput. Med. Imaging Graph. 19(1), 69–83 (1995)

    Article  Google Scholar 

  43. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  44. Malladi, R., Sethian, J.A., Vemuri, C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  45. Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, New York (2003)

    MATH  Google Scholar 

  46. Liu, X., Chen, D., Tawhai, M., Wu, X., Hoffman, E., Sonka, M.: Optimal graph search based segmentation of airway tree double surfaces across bifurcations. IEEE Trans. Med. Imaging 32(3), 493–510 (2013)

    Article  Google Scholar 

  47. Liu, X., Chen, D.Z., Wu, X., Sonka, M.: Optimal graph-based segmentation of 3D pulmonary airway and vascular trees across bifurcations. In: First International Workshop on Pulmonary Image Analysis, at the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), New York City, pp. 103–111 (September 2008)

    Google Scholar 

  48. Garvin, M.K., Abràmoff, M.D., Kardon, R., Russell, S.R., Wu, X., Sonka, M.: Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008)

    Article  Google Scholar 

  49. Lee, K., Abràmoff, M.D., Niemeijer, M., Garvin, M.K., Sonka, M.: 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head. In: Proceedings of SPIE Medical Imaging 2010: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 7626, San Diego, p. 76260V-8. SPIE (2010)

    Google Scholar 

  50. Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abràmoff, M.D., Sonka, M.: Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010)

    Article  Google Scholar 

  51. Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abràmoff, M.D.: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head. IEEE Trans. Med. Imaging 29(1), 159–168 (2010)

    Article  Google Scholar 

  52. Antony, B.J., Abràmoff, M.D., Lee, K., Sonkova, P., Gupta, P., Kwon, Y., Niemeijer, M., Hu, Z., Garvin, M.K.: Automated 3D segmentation of intraretinal layers from optic nerve head optical coherence tomography images. In: Proceedings of SPIE Medical Imaging 2010: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 7626, San Diego, p. 76260U-12. SPIE (2010)

    Google Scholar 

  53. Song, Q., Wu, X., Liu, Y., Smith, M., Buatti, J., Sonka, M.: Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009. Lecture Notes in Computer Science, vol. 5762, pp. 827–835. Springer, Berlin (2009)

    Google Scholar 

  54. Song, Q., Wu, X., Liu, Y., Sonka, M., Garvin, M.K.: Simultaneous searching of globally optimal interacting surfaces with shape priors. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, pp. 2879–2886 (June 2010)

    Google Scholar 

  55. Song, Q., Liu, Y., Liu, Y., Saha, P., Sonka, M., Wu, X.: Graph search with appearance and shape information for 3-D prostate and bladder segmentation. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010. Lecture Notes in Computer Science, vol. 6363, pp. 172–180. Springer, Berlin (2010)

    Chapter  Google Scholar 

  56. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–97 (1997)

    Article  MATH  Google Scholar 

  57. Song, Q., Chen, M., Bai, J., Sonka, M., Wu, X.: Surface-Region context in optimal multi-object Graph-Based segmentation: robust delineation of pulmonary tumors. In: Szekely, G., Hahn, H. (eds.) Information Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 6801, pp. 61–72. Springer, Berlin (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona K. Garvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garvin, M.K., Wu, X. (2014). Graph Algorithmic Techniques for Biomedical Image Segmentation. In: Saha, P., Maulik, U., Basu, S. (eds) Advanced Computational Approaches to Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41539-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41539-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41538-8

  • Online ISBN: 978-3-642-41539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics