Abstract
In traditional multicriteria decision analysis, decision maker evaluations or comparisons are considered to be error-free. In particular, algorithms like UTA*, ACUTA or UTA-GMS for learning utility functions to rank a set of alternatives assume that decision maker(s) are able to provide fully reliable training data in the form of e.g. pairwise preferences. In this paper we relax this assumption by attaching a likelihood degree to each ordered pair in the training set; this likelihood degree can be interpreted as a choice probability (group decision making perspective) or, alternatively, as a degree of confidence about pairwise preferences (single decision maker perspective). Since binary choice probabilities reflect order relations, the former can be used to train algorithms for learning utility functions. We specifically address the learning of piecewise linear additive utility functions through a logistic distribution; we conclude with examples and use-cases to illustrate the validity and relevance of our proposal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference. Springer, Berlin (2007)
Antoniou, A., Lu, W.S.: Practical Optimization: Algorithms and Engineering Applications. Springer, Berlin (2007)
Baum, E.B., Wilczek, F.: Supervised learning of probability distributions by neural networks. In: Anderson, D. (ed.) Neural Information Processing Systems, American Institute of Physics, pp. 52–61 (1987)
Beuthe, M., Scannella, G.: Applications comparées des méthodes d’analyse multicritère UTA. RAIRO Operations Research 30, 293–315 (1996)
Beuthe, M., Scannella, G.: Comparative analysis of UTA multicriteria methods. European Journal of Operational Research 130, 246–262 (2001)
Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Berlin (2006)
Block, H.D., Marschak, J.: Random orderings and stochastic theories of responses. In: Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B. (eds.) Contributions to Probability and Statistics, pp. 97–132. Stanford University Press, Stanford (1960)
Bous, G., Fortemps, P., Glineur, F., Pirlot, M.: ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements. European Journal of Operational Research 206, 435–444 (2010)
Burges, C.: Ranking as function approximation. In: Iske, A., Levesley, J. (eds.) Proceedings of the 5th International Conference on Algorithms for Approximation, pp. 3–18. Springer, Heidelberg (2006)
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 89–96. ACM Press, New York (2005)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2006)
Dyer, J.S.: MAUT – Multiattribute Utility Theory. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol. 78, pp. 265–292. Springer, New York (2005)
Fechner, G.T.: Elemente der Psychophysik. Breitkopf and Härtel, Leipzig (1860)
Figueira, J., Greco, S., Słowiński, R.: Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. European Journal of Operational Research 195, 460–486 (2009)
Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)
Fishburn, P.C.: Binary choice probabilities: on the varieties of stochastic transitivity. Journal of Mathematical Psychology 10, 327–352 (1973)
Fishburn, P.C.: Stochastic utility. In: Barberà, S., Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory, vol. 1, pp. 273–319. Kluwer, Dordrecht (1998)
Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987)
Fürnkranz, J., Hüllermeier, E.: Preference Learning: An Introduction. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 1–17. Springer, Berlin (2011)
Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Constrained nonlinear programming. In: Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J. (eds.) Optimization - Handbooks in Operations Research and Management Science, pp. 171–210. North Holland, Amsterdam (1989)
Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)
Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. European Journal of Operational Research 191, 416–436 (2008)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Statistics. Springer, Berlin (2009)
Huard, P.: Resolution of mathematical programming with nonlinear constraints by the method of centers. In: Abadie, J. (ed.) Nonlinear Programming, pp. 209–219. Wiley, New York (1967)
Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions to multicriteria decision-making: the UTA method. European Journal of Operational Research 10, 151–164 (1982)
Kadziński, M., Greco, S., Słowiński, R.: Selection of a representative value function in robust multiple criteria ranking and choice. European Journal of Operational Research 217, 541–553 (2012)
Kahneman, D.: Attention and effort. Prentice-Hall, Englewood Cliffs (1973)
Luce, R.D., Suppes, P.: Preference, utility and subjective probability. In: Luce, R.D., Bush, R.R., Galanter, E. (eds.) Handbook of Mathematical Psychology, vol. III, pp. 249–410. Wiley, New York (1965)
McFadden, D.: The choice theory approach to market research. Marketing Science 5, 275–297 (1986)
Nesterov, Y., Nemirovsky, A.: Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia (1994)
Shugan, S.M.: The cost of thinking. Journal of Consumer Research 7, 99–111 (1980)
Siskos, Y., Grigoroudis, E., Matsatsinis, N.: UTA methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 297–344. Springer, Berlin (2005)
Siskos, Y., Yannacopoulos, D.: UTASTAR: an ordinal regression method for building additive value functions. Investigaçao Operacional 5, 39–53 (1985)
Sonnevend, G.: An ‘analytical centre’ for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: Prekopa, A., Szelezsan, J., Strazicky, B. (eds.) System Modelling and Optimization. LNCIS, vol. 84, pp. 866–876. Springer, Heidelberg (1985)
Thurstone, L.L.: A law of comparative judgment. Psychological Review 34, 278–286 (1927a)
Thurstone, L.L.: Psychophysical analysis. American Journal of Psychology 38, 368–389 (1927b)
Ye, Y.: Interior point algorithms: theory and analysis. Wiley, New York (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bous, G., Pirlot, M. (2013). Learning Multicriteria Utility Functions with Random Utility Models. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds) Algorithmic Decision Theory. ADT 2013. Lecture Notes in Computer Science(), vol 8176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41575-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-41575-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41574-6
Online ISBN: 978-3-642-41575-3
eBook Packages: Computer ScienceComputer Science (R0)