Skip to main content

The State of the Art of Voronoi Diagram Research

  • Chapter
Transactions on Computational Science XX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8110))

  • 939 Accesses

Abstract

The notion of Voronoi diagrams refer to a conceptually simple geometric construct that is based on a finite set of points in a Euclidean space. Intuitively speaking, it is such a simple notion that it can be described to a non-specialist. Indeed even some social and cultural settings can be described that would convey the essence of the concept. Consider for instance a number of strangers who are standing still in a room at random locations. In what region of space can an individual freely move his/her arms without appearing to be impolite to the others? Without having a precise definition of this personal space, each individual would most likely have an intuitive notion of it. If each individual is reduced to a single point occupying a specific location in the room, the personal space of a particular point is its Voronoi cell, the set of all points that are closer to that point than to any of the other points. Each Voronoi cell is a polyhedral region. The Voronoi diagram of the set of points is the partitioning of the space into the collection of Voronoi cells, together with their boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 18.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific, New Jersey (2008)

    Book  Google Scholar 

  2. Kalantari, B.: Polynomiography: From the fundamental theorem of algebra to art. LEONARDO 38, 233–238 (2005)

    Article  Google Scholar 

  3. Kalantari, B.: Voronoi diagrams and polynomial root-finding. In: International Symposium on Voronoi Diagrams, pp. 31–40 (June 2009)

    Google Scholar 

  4. Kalantari, B.: Polynomial root-finding methods whose basins of attraction approximate voronoi diagram. Discrete & Computational Geometry 46(1), 187–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asano, T.: Matoušek, J., Tokuyama, T.: Society for Industrial and Applied Mathematics

    Google Scholar 

  6. de Biasi, S.C., Kalantari, B., Kalantari, I.: Mollified zone diagrams and their computation. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds.) Transactions on Computational Science XIV. LNCS, vol. 6970, pp. 31–59. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Kalantari, B.: A characterization theorem and an algorithm for a convex hull problem (2012), arxiv.org/pdf/1204.1873v2.pdf

  8. Gavrilova, M. (ed.): Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Springer (2008)

    Google Scholar 

  9. Luchnikov, V.A., Gavrilova, M.L., Medvedev, N.N., Voloshin, V.P.: The voronoi-delaunay approach for the free volume analysis of a packing of balls in a cylindrical cylindrical container. Future Generation Comp. Syst. 18, 673–679 (2002)

    Article  MATH  Google Scholar 

  10. Gavrilova, M.L., Ratschek, H., Rokne, J.G.: Exact computation of delaunay and power triangulations. Reliable Computing 6(1), 39–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gavrilova, M.L., Rokne, J.: Collision detection optimization in a multi-particle system. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS 2002, Part III. LNCS, vol. 2331, pp. 105–114. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Gavrilova, M.L., Rokne, J.G.: Collision detection optimization in a multi-particle system. J. Comput. Geometry Appl. 13, 279–302 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, C., Gavrilova, M.L.: Delaunay triangulation algorithm for fingerprint matching. In: ISVD, pp. 208–216 (2006)

    Google Scholar 

  14. Wang, C., Gavrilova, M.L., Luo, Y., Rokne, J.G.: An efficient algorithm for fingerprint matching. In: International Conference on Pattern Recognition ICPR, pp. 1034–1037. IEEE-CS (2006)

    Google Scholar 

  15. Bhattacharya, P., Gavrilova, M.L.: Crystal - a new density-based fast and efficient clustering algorithm. In: ISVD, pp. 102–111 (2006)

    Google Scholar 

  16. Xuan, K., Zhao, G., Taniar, D., Srinivasan, B., Safar, M., Gavrilova, M.L.: Network voronoi diagram based range search. In: AINA, pp. 741–748 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalantari, B. (2013). The State of the Art of Voronoi Diagram Research. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds) Transactions on Computational Science XX. Lecture Notes in Computer Science, vol 8110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41905-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41905-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41904-1

  • Online ISBN: 978-3-642-41905-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics