Skip to main content

DT-RANSAC: A Delaunay Triangulation Based Scheme for Improved RANSAC Feature Matching

  • Chapter
Book cover Transactions on Computational Science XX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8110))

Abstract

The main objective in content-based image retrieval is to find images similar to a query image in an image collection. Matching using descriptors computed from regions centered at local invariant interest points (keypoints) have become popular because of their robustness to changes in viewpoint and occlusion. However, local descriptor matching can produce many false matches. To improve the retrieval results, geometric verification is usually performed as a post-pocessing step. RANSAC can robustly fit a model to data in presence of outliers and has been widely used for the geometric verification stage. But obtaining a good hypothesis may require many trial runs, particularly when the proportion of inliers in the data is low. We introduce a novel geometric verification scheme called DT-RANSAC based on topological information in the Delaunay Triangulation of putatively matched keypoints to construct a refined set of matches, that is presented to the RANSAC algorithm to fit a homography. Experiments reveal that DT-RANSAC is able to converge to correct hypothesis in very few trial runs and the retrieval results are consistently better than geometric verification based on plain RANSAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaudet, P.R.: Rotationally invariant image operators. In: International Joint Conference on Pattern Recognition, pp. 579–583 (1978)

    Google Scholar 

  2. Bhattacharya, P., Gavrilova, M.L.: Voronoi diagram in optimal path planning. In: ISVD, pp. 38–47 (2007)

    Google Scholar 

  3. Bhattachariya, P., Gavrilova, M.L.: Roadmap-Based Path Planning - Using the Voronoi Diagram for a Clearance-Based Shortest Path. IEEE Robotics and Automation Magazine (IEEE RAM), Special Issue on Computational Geometry in Robotics 15(2), 58–66 (2008)

    Article  Google Scholar 

  4. Bhattacharya, P., Gavrilova, M.L.: CRYSTAL - A new density-based fast and efficient clustering algorithm. In: ISVD, pp. 102–111 (2006)

    Google Scholar 

  5. Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: CVPR (2005)

    Google Scholar 

  6. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Mikolajczyk, K., et al.: A comparison of affine region detectors. IJCV 65, 43–72 (2005)

    Article  Google Scholar 

  8. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  9. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Kovesi, P.D.: MATLAB and Octave functions for computer vision and image processing. Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia, http://www.csse.uwa.edu.au/~pk/research/matlabfns/

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV, 91–110 (2004)

    Google Scholar 

  12. Luchnikov, V.A., Gavrilova, M.L., Medvedev, N.N., Voloshin, V.P.: The Voronoi-Delaunay approach for the free volume analysis of a packing of balls in a cylindrical container. Future Generation Comp. Syst. 18(5), 673–679 (2002)

    Article  MATH  Google Scholar 

  13. Mikolajczyk, K.: Scale and affine invariant interest point detectors. PhD thesis (2002)

    Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: CVPR (2003)

    Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. IJCV 60(1), 63–86 (2004)

    Article  Google Scholar 

  16. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)

    Google Scholar 

  17. Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time Random Sample Consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)

    Google Scholar 

  19. Turcot, P., Lowe, D.G.: Better matching with fewer features: The selection of useful features in large database recognition problems. In: ICCV Workshop on Emergent Issues in Large Amounts of Visual Data, WS-LAVD (2009)

    Google Scholar 

  20. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)

    Article  Google Scholar 

  21. Vedaldi, A., Fulkerson, B.: VlFeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org/ (last accessed 2012)

  22. Xuan, K., Zhao, G., Taniar, D., Srinivasan, B., Safar, M., Gavrilova, M.L.: Network Voronoi Diagram Based Range Search. In: International Conference on Advanced Information Networking and Applications, pp. 741–748 (2009)

    Google Scholar 

  23. Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: CVPR, pp. 809–816 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhattacharya, P., Gavrilova, M. (2013). DT-RANSAC: A Delaunay Triangulation Based Scheme for Improved RANSAC Feature Matching. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds) Transactions on Computational Science XX. Lecture Notes in Computer Science, vol 8110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41905-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41905-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41904-1

  • Online ISBN: 978-3-642-41905-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics