Skip to main content

Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers: Calculation of the Volumetric Properties

  • Chapter
Transactions on Computational Science XX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8110))

Abstract

A simple formalism is proposed for a quantitative analysis of interatomic voids inside and outside a solute molecule in solution. It can be applied for the interpretation of volumetric data, obtained in studies of protein folding and unfolding in water. In particular, it helps to divide the partial molar volume of the solute into several components. The method is based on the Voronoi-Delaunay tessellation of molecular-dynamic models of solutions. It is suggested to select successive Voronoi shells, starting from the interface between the solute molecule and the solvent, and continuing to the outside (into the solvent) as well as into the inner of the molecule. Similarly, successive Delaunay layers, consisting of Delaunay simplexes, can also be constructed. Geometrical properties of the selected shells and layers are discussed. The temperature behavior of inner, boundary and outer shells is discussed by the example of a molecular-dynamic model of an aqueous solution of the polypeptide hIAPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chalikian, T.V.: Volumetric properties of proteins: Annu. Rev. Biophys. Biomol. Struct. 32, 207–235 (2003)

    Article  Google Scholar 

  2. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: Fast, Flexible, and Free. J. Comp. Chem. 26(16), 1701–1718 (2005)

    Article  Google Scholar 

  3. Medvedev, N.N.: Computational porosimetry. In: Engel, P., Syta, H. (eds.) Voronoi’s Impact on Modern Science, pp. 165–175. Institute of Math National Acad. of Sciences of Ukraine, Kiev (1998)

    Google Scholar 

  4. Sastry, S., Truskett, T.M., Debenedetti, P.G., Torquato, S., Stillinger, F.H.: Free Volume in the Hard-Sphere Liquid. Molecular Physics 95, 289–297 (1998)

    Article  Google Scholar 

  5. Malavasi, G., Menziani, M.C., Pedone, A., Segre, U.: Void size distribution in MD-modelled silica glass structures. Journal of Non-Crystalline Solids 352, 285–296 (2006)

    Article  Google Scholar 

  6. Luchnikov, V.A., Gavrilova, M.L., Medvedev, N.N., Voloshin, V.P.: The Voronoi-Delaunay approach for the free volume analysis of a packing of balls in a cylindrical container. Future Generation Computer Systems, Special Issue on Computer Modeling, Algorithms and Supporting Environments 18, 673–679 (2002)

    Article  MATH  Google Scholar 

  7. Rémond, S., Gallias, J.L., Mizrahi, A.: Characterization of voids in spherical particle systems by Delaunay empty spheres. Granular Matter 10, 329–334 (2008)

    Article  MATH  Google Scholar 

  8. Haw, M.D.: Void structure and cage fluctuations in simulations of concentrated suspensions. Soft Matter 2, 950–956 (2006)

    Article  Google Scholar 

  9. Sung, B.J., Yethiraj, A.: Structure of void space in polymer solutions. Phys. Rev. E 81, 031801 (2010)

    Google Scholar 

  10. Alinchenko, M.G., Anikeenko, A.V., Medvedev, N.N., Voloshin, V.P., Mezei, M., Jedlovszky, P.: Morphology of voids in molecular systems. A Voronoi-Delaunay analysis of a simulated DMPC membrane. J. Phys. Chem. B 108(49), 19056–19067 (2004)

    Google Scholar 

  11. Anikeenko, A.V., Alinchenko, M.G., Voloshin, V.P., Medvedev, N.N., Gavrilova, M.L., Jedlovszky, P.: Implementation of the Voronoi-Delaunay Method for Analysis of Intermolecular Voids. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 217–226. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and construction of pockets in macromolecules. Discr. Appl. Math. 88, 83–102 (1998)

    Google Scholar 

  13. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins. Proteins: Struct. Func. Genet. 33, 18–29 (1998)

    Google Scholar 

  14. Kim, D., Cho, C.-H., Cho, Y., Ryu, J., Bhak, J., Kim, D.-S.: Pocket extraction on proteins via the Voronoi diagram of spheres. Journal of Molecular Graphics and Modelling 26(7), 1104–1112 (2008)

    Article  Google Scholar 

  15. Raschke, T.M., Levitt, M.: Nonpolar solutes enhance water structure within hydration shells while reducing interactions between them. PNAS 102(19), 6777–6782 (2005)

    Article  Google Scholar 

  16. Schröder, C., Rudas, T., Boresch, S., Steinhausera, O.: Simulation studies of the protein-water interface. I.Properties at the molecular resolution. J. Chem. Phys. 124, 234907 (2006)

    Article  Google Scholar 

  17. Bouvier, B., Grünberg, R., Nilges, M., Cazals, F.: Shelling the Voronoi interface of protein-protein complexes predicts residue activity and conservation. Proteins: Structure, Function, and Bioinformatics 76(3), 677–692 (2008)

    Article  Google Scholar 

  18. Neumayr, G., Rudas, T., Steinhausera, O.: Global and local Voronoi analysis of solvation shells of proteins. J. Chem. Phys. 133, 084108 (2010)

    Google Scholar 

  19. Voloshin, V.P., Medvedev, N.N., Andrews, M.N., Burri, R.R., Winter, R., Geiger, A.: Volumetric Properties of Hydrated Peptides: Voronoi-Delaunay Analysis of Molecular Simulation Runs. J. Phys. Chem. B 115(48), 14217–14228 (2011)

    Article  Google Scholar 

  20. Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial tessellations - concepts and applications of Voronoi diagrams. John Wiley & Sons, New York (2000)

    Book  MATH  Google Scholar 

  21. Medvedev, N.N.: Voronoi-Delaunay method for non-crystalline structures. SB of Russian Academy of Science, Novosibirsk (2000) (in Russian)

    Google Scholar 

  22. Richards, F.M.: Calculation of molecular volumes and areas for structures of known geo-metry. Methods in Enzymology 115, 440–464 (1985)

    Article  MathSciNet  Google Scholar 

  23. Gellatly, B.J., Finney, J.L.: Calculation of protein volumes: an alternative to the Voronoi procedure. J. Mol. Biol. 161, 305–322 (1982)

    Article  Google Scholar 

  24. Anishchik, S.V., Medvedev, N.N.: Three-dimensional Apollonian packing as a model for dense granular systems. Phys.Rev.Lett. 75(23), 4314–4317 (1995)

    Article  Google Scholar 

  25. Medvedev, N.N., Voloshin, V.P., Luchnikov, V.A., Gavrilova, M.L.: An algorithm for three-dimensional Voronoi S-network. J. Comput. Chem. 27, 1676–1692 (2006)

    Article  Google Scholar 

  26. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 78–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim, D.-S., Cho, Y., Sugihara, K.: Quasi-worlds and Quasi-operators on Quasi-triangulations. Computer-Aided Design 42(10), 874–888 (2010)

    Article  MATH  Google Scholar 

  28. Aste, T., Szeto, K.Y., Tam, W.Y.: Statistical properties and shell analysis in random cellular structures. Phys.Rev.E 54(5), 5482–5492 (1996)

    Article  Google Scholar 

  29. Andrews, M.N., Winter, R.: Comparing the Structural Properties of Human and Rat Islet Amyloid Polypeptide by MD Computer Simulations. Biophys. Chem. 156, 43–50 (2011)

    Article  Google Scholar 

  30. Mitra, L., Smolin, N., Ravindra, R., Royer, C., Winter, R.: Pressure perturbation calorimetric study of the solvation properties and the thermal unfolding of proteins in solution - experiment and theoretical interpretation. Phys.Chem. Chem. Phys. 8, 1249–1265 (2006)

    Article  Google Scholar 

  31. Imai, T.: Molecular theory of partial molar volume and its application to biomolecular systems. Cond. Matter Physics 10, 3(51), 343–361 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, A.V., Voloshin, V.P., Medvedev, N.N., Geiger, A. (2013). Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers: Calculation of the Volumetric Properties. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds) Transactions on Computational Science XX. Lecture Notes in Computer Science, vol 8110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41905-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41905-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41904-1

  • Online ISBN: 978-3-642-41905-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics