Abstract
Molecular external structure is important in understanding molecular interaction with its solvent environment and is useful in developing drugs. Important examples of external structures are tunnels, pockets, caves, clefts, voids, etc. This paper presents algorithms to extract tunnels and voids from molecular structures. The algorithms are based on the the Voronoi diagram of atoms in molecules and their time complexity are both O(m) time in the worst case, where m represents the number of entities in the Voronoi diagram. The algorithms are mathematically correct, computationally efficient, numerically robust, and easy to implement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Voronoi Diagram Research Center (2011), http://voronoi.hanyang.ac.kr/
Kim, D.S., Sugihara, K.: Tunnels and voids in molecules via voronoi diagram. In: 2012 9th International Symposium on Voronoi Diagrams in Science and Engineering (2012)
Kim, D.S., Cho, C.H., Kim, D., Cho, Y.: Recognition of docking sites on a protein using β-shape based on Voronoi diagram of atoms. Computer-Aided Design 38(5), 431–443 (2006)
Smart, O.S., Goodfellow, J.M., Wallace, B.A.: The pore dimensions of gramicidin a. Biophysical Journal 65(6), 2455–2460 (1993)
Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A., Sansom, M.S.P.: HOLE: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics 14, 354–360 (1996)
Kleywegt, G.J., Jones, T.A.: Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallographica Section D 50, 178–185 (1994)
Laskowski, R.A.: SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. Journal of Molecular Graphics 13, 323–330 (1995)
Voss, N.R., Gerstein, M., Steitz, T.A., Moore, P.B.: The geometry of the ribosomal polypeptide exit tunnel. Journal of Molecular Biology 260, 893–906 (2006)
Petrek, M., Otyepka, M., Banas, P., Kosinova, P., Koca, J., Damborsky, J.: CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7(316) (2006)
DeLano, W.L.: Pymol: An open-source molecular graphics tool. CCP4 Newsletter (2002)
DeLano, W.L.: PyMOL molecular graphics system homepage (2002), http://pymol.org/
Damborský, J., Petřek, M., Banáš, P., Otyepka, M.: Identification of tunnels in proteins, nucleic acids inorganic materials and molecular ensembles. Biotechnology Journal 2, 62–67 (2007)
Petrek, M., Kosinova, P., Koca, J., Otyepka, M.: MOLE: A Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15(11), 1357–1363 (2007)
Medek, P., Beneš, P., Sochor, J.: Computation of tunnels in protein molecules using Delaunay triangulation. Journal of WSCG 15, 107–114 (2007)
KozlÃlová, B., Andres, F., Sochor, J.: Visualization of tunnels in protein molecules. In: AfriGraph 2007, pp. 111–209 (2007)
Yaffe, E., Fishelovitch, D., Wolfson, H.J., Halperin, D., Nussinov, R.: MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Research 36, W210–W215 (2008)
Yaffe, E., Fishelovitch, D., Wolfson, H.J., Halperin, D., Nussinov, R.: MolAxis: Efficient and accurate identification of channels in macromolecules. Proteins: Structure, Function, and Bioinformatics 73(1), 72–86 (2008)
Yaffe, E., Halperin, D.: Approximating the pathway axis and the persistence diagrams for a collection of balls in 3-space. Discrete & Computational Geometry 44, 660–685 (2010)
Ho, B.K., Gruswitz, F.: HOLLOW: Generating accurate representations of channel and interior surfaces in molecular structures. BMC Structural Biology 8(1), 49 (2008)
Coleman, R.G., Sharp, K.A.: Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophysical Journal 96, 632–645 (2009)
Norbert Lindow, D.B., Hege, H.C., Member, I.: Voronoi-based extraction and visualization of molecular paths. IEEE Transactions on Visualization and Computer Graphics 17(12), 2025–2034 (2011)
Anikeenko, A.V., Alinchenko, M.G., Voloshin, V.P., Medvedev, N.N., Gavrilova, M.L., Jedlovszky, P.: Implementation of the voronoi-delaunay method for analysis of intermolecular voids. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 217–226. Springer, Heidelberg (2004)
Goncalves, P.F.B., Stassen, H.: Free energy of solvation from molecular dynamics simulation applying voronoi-delaunay triangulation to the cavity creation. Journal of Chemical Physics 123(21), 214109 (2005)
Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)
Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, Chichester (1999)
Kim, D.S., Cho, Y., Ryu, J., Kim, J.K., Kim, D.: Anomalies in quasi-triangulations and beta-complexes of spherical atoms in molecules. Computer-Aided Design 45(1), 35–52 (2013)
Kim, D.S., Cho, Y., Sugihara, K.: Quasi-worlds and quasi-operators on quasi-triangulations. Computer-Aided Design 42(10), 874–888 (2010)
Kim, D.S., Kim, D., Cho, Y., Sugihara, K.: Quasi-triangulation and interworld data structure in three dimensions. Computer-Aided Design 38(7), 808–819 (2006)
Kim, D.S., Kim, J.K., Cho, Y., Kim, C.M.: Querying simplexes in quasi-triangulation. Computer-Aided Design 44(2), 85–98 (2012)
Kim, D.S., Cho, Y., Sugihara, K., Ryu, J., Kim, D.: Three-dimensional beta-shapes and beta-complexes via quasi-triangulation. Computer-Aided Design 42(10), 911–929 (2010)
Ryu, J., Cho, Y., Kim, D.S.: Triangulation of molecular surfaces. Computer-Aided Design 41(6), 463–478 (2009)
Ryu, J., Park, R., Kim, D.S.: Molecular surfaces on proteins via beta shapes. Computer-Aided Design 39(12), 1042–1057 (2007)
Kim, C.-M., Won, C.-I., Kim, J.-K., Ryu, J., Bhak, J., Kim, D.-S.: Protein-ligand docking based on beta-shape. In: Gavrilova, M.L., Tan, C.J.K., Anton, F. (eds.) Transactions on Computational Science IX. LNCS, vol. 6290, pp. 123–138. Springer, Heidelberg (2010)
Kim, D.S., Kim, C.M., Won, C.I., Kim, J.K., Ryu, J., Cho, Y., Lee, C., Bhak, J.: Betadock: Shape-priority docking method based on beta-complex. Journal of Biomolecular Structure & Dynamics 29(1), 219–242 (2011)
Kim, D.S., Ryu, J., Shin, H., Cho, Y.: Beta-decomposition for the volume and area of the union of three-dimensional balls and their offsets. Journal of Computational Chemistry 12(3), 1225–1283 (2012)
Kim, D.S., Kim, J.K., Won, C.I., Kim, C.M., Park, J.Y., Bhak, J.: Sphericity of a protein via the β-complex. Journal of Molecular Graphics and Modelling 28(7), 636–649 (2010)
Lee, K.: Principles of CAD/CAM/CAE Systems. Addison Wesley (1999)
Bondi, A.: van der Waals volumes and radii. Journal of Physical Chemistry 68, 441–451 (1964)
Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)
Mäntylä, M.: An Introduction to Solid Modeling. Computer Science Press (1988)
RCSB Protein Data Bank (2009), http://www.rcsb.org/pdb/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kim, DS., Cho, Y., Kim, JK., Sugihara, K. (2013). Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds) Transactions on Computational Science XX. Lecture Notes in Computer Science, vol 8110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41905-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-41905-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41904-1
Online ISBN: 978-3-642-41905-8
eBook Packages: Computer ScienceComputer Science (R0)