Skip to main content

On Properties of Forbidden Zones of Polygons and Polytopes

  • Chapter
Transactions on Computational Science XX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8110))

  • 857 Accesses

Abstract

Given a region R in a Euclidean space and a distinguished point p ∈ R, the forbidden zone, F(R,p), is the union of all open balls with center in R having p as a common boundary point. The notion of forbidden zone, defined in [2], was shown to be instrumental in the characterization of mollified zone diagrams, a relaxation of zone diagrams, introduced by Asano, et al. [3], itself a variation of Voronoi diagrams. For a polygon P, we derive formulas for the area and circumference of F(P,p) when p is fixed, and for minimum areas and circumferences when p ranges in P. These optimizations associate interesting new centers to P, even when a triangle. We give some extensions to polytopes and bounded convex sets. We generalize forbidden zones by allowing p to be replaced by an arbitrary subset, with attention to the case of finite sets. The corresponding optimization problems, even for two-point sites, and their characterizations result in many new and challenging open problems.

This paper is an extended version of [1] and is dedicated to the memory of Sergio de Biasi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berkowitz, R., Kalantari, B., Kalantari, I., Menendez, D.: On properties of forbidden zones of polygons and polytopes. In: International Symposium on Voronoi Diagrams, pp. 56–65 (2012)

    Google Scholar 

  2. de Biasi, S.C., Kalantari, B., Kalantari, I.: Mollified zone diagrams and their computation. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds.) Transactions on Computational Science XIV. LNCS, vol. 6970, pp. 31–59. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Asano, T., Matoušek, J., Tokuyama, T.: Zone diagrams: Existence, uniqueness, and algorithmic challenge. Society for Industrial and Applied Mathematics 37(4), 1192–1198 (2007)

    Google Scholar 

  4. Aurenhammer, F.: Voronoi diagrams—a survery of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  5. Kalantari, B.: Voronoi diagrams and polynomial root-finding. In: International Symposium on Voronoi Diagrams, pp. 31–40 (June 2009)

    Google Scholar 

  6. Kalantari, B.: Polynomial root-finding methods whose basins of attraction approximate voronoi diagram. Discrete & Computational Geometry 46(1), 187–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, D.S., Ryu, J., Shin, H., Cho, Y.: Beta-decomposition for the volume and area of the union of three-dimensional balls and their offsets. Journal of Computational Chemistry 33(13), 1252–1273 (2012)

    Article  Google Scholar 

  8. Wesolowsky, G.O.: The weber problem: History and perspectives. Computers & Operations Research 1(1), 5–23 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. John Wiley & Sons, New York (1980)

    Google Scholar 

  10. Shen, Y., Tolosa, J.: The weighted fermat triangle problem. International Journal of Mathematics and Mathematical Sciences (2008)

    Google Scholar 

  11. Ostresh Jr., L.M.: On the convergence of a class of iterative methods for solving the weber location problem. Operations Research 26(4), 597–609 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berkowitz, R., Kalantari, B., Kalantari, I., Menendez, D. (2013). On Properties of Forbidden Zones of Polygons and Polytopes. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds) Transactions on Computational Science XX. Lecture Notes in Computer Science, vol 8110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41905-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41905-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41904-1

  • Online ISBN: 978-3-642-41905-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics