Abstract
Continuous curves are approximated by sample points, which carry the shape information of the curve. If sampling is sufficiently dense, the sample points can be used to extract the structural properties of the curve (e.g., crust, medial axis, etc.). This article focuses on approximation of medial axis from sample points. Especially, we review the methods that approximate the medial axis using Voronoi diagram. Such methods are extremely sensitive to noise and boundary perturbations. Thus, a pre- or post-processing step is needed to filter irrelevant branches of the medial axis, which are introduced in this article. We, then, propose a new medial axis approximation algorithm that automatically avoids irrelevant branches through labeling sample points. The results indicate that our method is stable, easy to implement, robust and able to handle sharp corners, even in the presence of significant noise and perturbations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, H., et al.: A Transformation for Extracting New Descriptors of Shape. Models for the Perception of Speech and Visual Form 19, 362–380 (1967)
Blum, H., Nagel, R.N.: Shape Description Using Weighted Symmetric Axis Features. Pattern Recognition 10, 167–180 (1978)
Bookstein, F.L.: The Line-Skeleton. Computer Graphics and Image Processing 11, 123–137 (1979)
Brandt, J.W., Jain, A.K., Ralph Algazi, V.: Medial Axis Representation and Encoding of Scanned Documents. Journal of Visual Communication and Image Representation 2, 151–165 (1991)
Gross, L.M.: Transfinite Surface Interpolation over Voronoi Diagrams. PhD Thesis, Arizona State University (1995)
Chou, J.J.: Numerical Control Milling Machine Tool path Generation for Regions Bounded by Free Form Curves and Surfaces. PhD Thesis, University of Utah Salt Lake City, UT, USA (1989)
O’rourke, J.: Computational Geometry in C. Cambridge University (1998)
Gursoy, H.N., Patrikalakis, N.M.: Automatic Coarse and Fine Surface Mesh Generation Scheme Based on Medial Axis Transform: Part I Algorithms. Engineering with Computers (New York) 8, 121–137 (1992)
Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An Algorithm for the Medial Axis Transform of 3d Polyhedral Solids. IEEE Transactions on Visualization and Computer Graphics 2, 44–61 (1996)
Hisada, M., Belyaev, A.G., Kunii, T.L.: A Skeleton-Based Approach for Detection of Perceptually Salient Features on Polygonal Surfaces. Computer Graphics Forum 21, 689–700 (2002)
Hoffmann, C.M.: Geometric and Solid Modeling: An Introduction. Morgan Kaufmann (1989)
Gold, C.: Crust and Anti-Crust: A One-Step Boundary and Skeleton Extraction Algorithm. In: Proceedings of the Fifteenth Annual Symposium on Computational Geometry, pp. 189–196 (1999)
Gold, C., Snoeyink, J.: A One-Step Crust and Skeleton Extraction Algorithm. Algorithmica 30, 144–163 (2001)
Gold, C., Dakowicz, M.: The Crust and Skeleton–Applications in GIS. In: Proceedings of 2nd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 33–42 (2005)
Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies-a Comprehensive Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 869–885 (1992)
Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi Skeletons. Pattern Recognition 28, 343–359 (1995)
Borgefors, G.: Centres of Maximal Discs in the 5-7-11 Distance Transform. In: Proceedings of the Scandinavian Conference on Image Analysis, vol. 1, pp. 105–105 (1993)
Arcelli, C., Frucci, M.: Reversible Skeletonization by (5, 7, 11)-Erosion. In: Proceedings of the International Workshop on Visual Form: Analysis and Recognition, pp. 21–28 (1992)
Chou, J.J.: Voronoi Diagrams for Planar Shapes. IEEE Computer Graphics and Applications 15, 52–59 (1995)
Ramanathan, M., Gurumoorthy, B.: Constructing Medial Axis Transform of Planar Domains with Curved Boundaries. Computer-Aided Design 35, 619–632 (2003)
Amenta, N., Bern, M.W., Eppstein, D.: The Crust and the Beta-Skeleton: Combinatorial Curve Reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)
Russ, J.C.: The Image Processing Handbook. CRC Press (2002)
Wenger, R.: Shape and Medial Axis Approximation from Samples. PhD Thesis. The Ohio State University (2003)
Cheng, S.W., Funke, S., Golin, M., Kumar, P., Poon, S.H., Ramos, E.: Curve Reconstruction from Noisy Samples. Computational Geometry 31, 63–100 (2005)
Dey, T.K., Wenger, R.: Fast Reconstruction of Curves with Sharp Corners. International Journal of Computational Geometry and Applications 12, 353–400 (2002)
Ledoux, H.: Modelling Three-Dimensional Fields in Geo-Science with the Voronoi Diagram and Its Dual. Ph.D Thesis. School of Computing, University of Glamorgan, Pontypridd, Wales, UK (2006)
Gavrilova, M., Ratschek, H., Rokne, J.G.: Exact Computation of Delaunay and Power Triangulations. Reliable Computing 6, 39–60 (2000)
Karimipour, F., Delavar, M.R., Frank, A.U.: A Simplex-Based Approach to Implement Dimension Independent Spatial Analyses. Journal of Computer and Geosciences 36, 1123–1134 (2010)
Giesen, J., Miklos, B., Pauly, M.: Medial Axis Approximation of Planar Shapes from Union of Balls: A Simpler and More Robust Algorithm. In: Canad. Conf. Comput. Geom., pp. 105–108 (2007)
Edelsbrunner, H.: The Union of Balls and Its Dual Shape. Discrete & Computational Geometry 13, 415–440 (1995)
Amenta, N., Choi, S., Kolluri, R.K.: The Power Crust. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 249–266 (2001)
Amenta, N., Kolluri, R.K.: The Medial Axis of a Union of Balls. Computational Geometry 20, 25–37 (2001)
Attali, D., Montanvert, A.: Computing and Simplifying 2d and 3d Continuous Skeletons. Computer Vision and Image Understanding 67, 261–273 (1997)
Miklos, B., Giesen, J., Pauly, M.: Medial Axis Approximation from Inner Voronoi Balls: A Demo of the Mesecina Tool. In: Proceedings of the Twenty-third Annual Symposium on Computational Geometry, pp. 123–124 (2007)
Tam, R.C.: Voronoi Ball Models for Computational Shape Applications. PhD thesis, The University of British Columbia (2004)
Karimipour, F., Delavar, M.R., Frank, A.U.: A Mathematical Tool to Extend 2D Spatial Operations to Higher Dimensions. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 153–164. Springer, Heidelberg (2008)
Alliez, P., Devillers, O., Snoeyink, J.: Removing Degeneracies by Perturbing the Problem or Perturbing the World. Reliable Computing 6, 61–79 (2000)
Mokhtarian, F., Mackworth, A.: A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves (Pdf). IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992)
Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-Jacobi Skeletons. International Journal of Computer Vision 48, 215–231 (2002)
Siddiqi, K., Kimia, B.B., Shu, C.W.: Geometric Shock-Capturing Eno Schemes for Subpixel Interpolation, Computation and Curve Evolution. Graphical Models and Image Processing 59, 278–301 (1997)
Attali, D., Montanvert, A.: Modeling Noise for a Better Simplification of Skeletons. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 13–16 (1996)
Attali, D., di Baja, G., Thiel, E.: Pruning Discrete and Semicontinuous Skeletons. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 488–493. Springer, Heidelberg (1995)
Malandain, G., Fernández-Vidal, S.: Euclidean Skeletons. Image and Vision Computing 16, 317–327 (1998)
Chazal, F., Lieutier, A.: The “Lambda Medial Axis”. Graphical Models 67, 304–331 (2005)
Attali, D., Montanvert, A.: Semicontinuous Skeletons of 2d and 3d Shapes. In: Aspects of Visual Form Processing, pp. 32–41 (1994)
Bai, X., Latecki, L.J.: Discrete skeleton evolution. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 362–374. Springer, Heidelberg (2007)
Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The Scale Axis Transform. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 106–115 (2009)
Mesecina: computational geometry you can see, http://www.balintmiklos.com/mesecina
Karimipour, F., Ghandehari, M.: A Stable Voronoi-Based Algorithm for Medial Axis Extraction through Labeling Sample Points. In: Proceedings of the 9th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2012), New Jersey, USA, pp. 109–114 (2012)
Ghandehari, M., Karimipour, F.: Voronoi-Based Curve Reconstruction: Issues and Solutions. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part II. LNCS, vol. 7334, pp. 194–207. Springer, Heidelberg (2012)
Karimipour, F., Ghandehari, M., Ledoux, H.: Medial Axis Approximation of River Network for Catchment Area Delineation. In: Proceedings of the International Workshop on Geoinformation Advances. Lecture Notes in Geoinformation and Cartography (LNG&C), p. 223. Springer, Johor (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Karimipour, F., Ghandehari, M. (2013). Voronoi-Based Medial Axis Approximation from Samples: Issues and Solutions. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds) Transactions on Computational Science XX. Lecture Notes in Computer Science, vol 8110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41905-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-41905-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41904-1
Online ISBN: 978-3-642-41905-8
eBook Packages: Computer ScienceComputer Science (R0)