Skip to main content

Improving Robustness and Precision in GEI + HOG Action Recognition

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

Abstract

Histograms of Oriented Gradients is a well known and applied descriptor, however “black box” use is common. Gradient computation is the key to performance and may be application dependent. In this paper we examine explicit, implicit and Hessian schemes as opposed to the recommended centred mask. Results indicate the explicit Bickley scheme boosts robustness, both static and dynamic information are important to recognition and full body Gait-Energy Images are preferred. Robustness is boosted by specific choice of cell and bin parameters and SVM where actions are pre-classified using temporal information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  2. Sun, B., Yan, J., Liu, Y.: Human gait recognition by integrating motion feature and shape feature. In: International Conference on Multimedia Technology (ICMT), pp. 1–4 (2010)

    Google Scholar 

  3. Cao, L., Dikmen, M., Fu, Y., Huang, T.: Gender recognition from body. In: Proceedings of the 16th ACM International Conference on Multimedia, pp. 725–728 (2008)

    Google Scholar 

  4. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  5. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing (28)

    Google Scholar 

  6. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 257–267 (2001)

    Article  Google Scholar 

  7. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-time Shapes. In: 10th IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1395–1402 (2005)

    Google Scholar 

  8. Chen, H.S., Chen, H.T., Chen, Y.W., Lee, S.Y.: Human action recognition using Star Skeleton. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks (VSSN), pp. 171–178 (2006)

    Google Scholar 

  9. Chaudhry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of Oriented Optical Flow and Binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1932–1939 (2009)

    Google Scholar 

  10. Wang, H., Ullah, M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: Proceedings of the British Machine Vision Conference (2009)

    Google Scholar 

  11. Laptev, I., Lindeberg, T.: Space-time interest points. In: Proceedings of the 9th IEEE International Conference on Computer Vision, vol. 1, pp. 432–439 (2003)

    Google Scholar 

  12. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  13. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Computing Surveys (CSUR) 43, 1–43 (2011)

    Article  Google Scholar 

  15. Bashir, K., Xiang, T., Gong, S.: Feature selection on Gait Energy Image for human identification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 985–988 (2008)

    Google Scholar 

  16. Martín-Félez, R., Xiang, T.: Gait recognition by ranking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 328–341. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Yang, X., Zhou, Y., Zhang, T., Shu, G., Yang, J.: Gait recognition based on dynamic region analysis. Signal Processing 88, 2350–2356 (2008)

    Article  MATH  Google Scholar 

  18. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognition Letters 31, 2052–2060 (2010)

    Article  Google Scholar 

  19. Dempster, W.T., Gaughran, G.R.L.: Properties of body segments based on size and weight. American Journal of Anatomy 120, 33–54 (1967)

    Article  Google Scholar 

  20. Drillis, R., Contini, R.: Body segment parameters. New York University, Under Contract with Office of Vocational Rehabilitation, Department Health, Education and Welfare, New York (1966)

    Google Scholar 

  21. Han, J., Bhanu, B.: Individual recognition using Gait Energy Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 316–322 (2006)

    Article  Google Scholar 

  22. Lin, H.-W., Hu, M.-C., Wu, J.-L.: Gait-based action recognition via accelerated minimum incremental coding length classifier. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, C.-W., Andreopoulos, Y., Breiteneder, C. (eds.) MMM 2012. LNCS, vol. 7131, pp. 266–276. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Belyaev, A.: On implicit image derivatives and their applications. In: Proceedings of the British Machine Vision Conference, pp. 1–12 (2011)

    Google Scholar 

  24. Scharr, H., Körkel, S., Jähne, B.: Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung. In: Proceedings of DAGM, pp. 367–374 (1997)

    Google Scholar 

  25. Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. Journal of Visual Communication and Image Representation 13, 103–118 (2002)

    Article  Google Scholar 

  26. Bickley, W.G.: Finite difference formulae for the square lattice. Quarterly Journal of Mechanics and Applied Mathematics 1, 35–42 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hamming, R.W.: Digital Filters, 3rd edn. Dover (1998)

    Google Scholar 

  28. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hariharan, B., Malik, J., Ramanan, D.: Discriminative decorrelation for clustering and classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 459–472. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as Space-time Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 2247–2253 (2007)

    Article  Google Scholar 

  31. Liu, H., Feris, R., Sun, M.T.: Benchmarking datasets for human activity recognition. In: Visual Analysis of Humans, pp. 411–427 (2011)

    Google Scholar 

  32. Wang, Y., Mori, G.: Max-margin hidden conditional random fields for human action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 872–879 (2009)

    Google Scholar 

  33. Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: IEEE 12th International Conference on Computer Vision, pp. 492–497 (2009)

    Google Scholar 

  34. Fathi, A., Mori, G.: Action recognition by learning mid-level motion features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  35. Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Whytock, T.P., Belyaev, A., Robertson, N.M. (2013). Improving Robustness and Precision in GEI + HOG Action Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics