Abstract
Histograms of Oriented Gradients is a well known and applied descriptor, however “black box” use is common. Gradient computation is the key to performance and may be application dependent. In this paper we examine explicit, implicit and Hessian schemes as opposed to the recommended centred mask. Results indicate the explicit Bickley scheme boosts robustness, both static and dynamic information are important to recognition and full body Gait-Energy Images are preferred. Robustness is boosted by specific choice of cell and bin parameters and SVM where actions are pre-classified using temporal information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)
Sun, B., Yan, J., Liu, Y.: Human gait recognition by integrating motion feature and shape feature. In: International Conference on Multimedia Technology (ICMT), pp. 1–4 (2010)
Cao, L., Dikmen, M., Fu, Y., Huang, T.: Gender recognition from body. In: Proceedings of the 16th ACM International Conference on Multimedia, pp. 725–728 (2008)
Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)
Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing (28)
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 257–267 (2001)
Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-time Shapes. In: 10th IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1395–1402 (2005)
Chen, H.S., Chen, H.T., Chen, Y.W., Lee, S.Y.: Human action recognition using Star Skeleton. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks (VSSN), pp. 171–178 (2006)
Chaudhry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of Oriented Optical Flow and Binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1932–1939 (2009)
Wang, H., Ullah, M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: Proceedings of the British Machine Vision Conference (2009)
Laptev, I., Lindeberg, T.: Space-time interest points. In: Proceedings of the 9th IEEE International Conference on Computer Vision, vol. 1, pp. 432–439 (2003)
Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)
Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)
Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Computing Surveys (CSUR) 43, 1–43 (2011)
Bashir, K., Xiang, T., Gong, S.: Feature selection on Gait Energy Image for human identification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 985–988 (2008)
Martín-Félez, R., Xiang, T.: Gait recognition by ranking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 328–341. Springer, Heidelberg (2012)
Yang, X., Zhou, Y., Zhang, T., Shu, G., Yang, J.: Gait recognition based on dynamic region analysis. Signal Processing 88, 2350–2356 (2008)
Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognition Letters 31, 2052–2060 (2010)
Dempster, W.T., Gaughran, G.R.L.: Properties of body segments based on size and weight. American Journal of Anatomy 120, 33–54 (1967)
Drillis, R., Contini, R.: Body segment parameters. New York University, Under Contract with Office of Vocational Rehabilitation, Department Health, Education and Welfare, New York (1966)
Han, J., Bhanu, B.: Individual recognition using Gait Energy Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 316–322 (2006)
Lin, H.-W., Hu, M.-C., Wu, J.-L.: Gait-based action recognition via accelerated minimum incremental coding length classifier. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, C.-W., Andreopoulos, Y., Breiteneder, C. (eds.) MMM 2012. LNCS, vol. 7131, pp. 266–276. Springer, Heidelberg (2012)
Belyaev, A.: On implicit image derivatives and their applications. In: Proceedings of the British Machine Vision Conference, pp. 1–12 (2011)
Scharr, H., Körkel, S., Jähne, B.: Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung. In: Proceedings of DAGM, pp. 367–374 (1997)
Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. Journal of Visual Communication and Image Representation 13, 103–118 (2002)
Bickley, W.G.: Finite difference formulae for the square lattice. Quarterly Journal of Mechanics and Applied Mathematics 1, 35–42 (1948)
Hamming, R.W.: Digital Filters, 3rd edn. Dover (1998)
Lele, S.K.: Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 103, 16–42 (1992)
Hariharan, B., Malik, J., Ramanan, D.: Discriminative decorrelation for clustering and classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 459–472. Springer, Heidelberg (2012)
Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as Space-time Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 2247–2253 (2007)
Liu, H., Feris, R., Sun, M.T.: Benchmarking datasets for human activity recognition. In: Visual Analysis of Humans, pp. 411–427 (2011)
Wang, Y., Mori, G.: Max-margin hidden conditional random fields for human action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 872–879 (2009)
Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: IEEE 12th International Conference on Computer Vision, pp. 492–497 (2009)
Fathi, A., Mori, G.: Action recognition by learning mid-level motion features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)
Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Whytock, T.P., Belyaev, A., Robertson, N.M. (2013). Improving Robustness and Precision in GEI + HOG Action Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-41914-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41913-3
Online ISBN: 978-3-642-41914-0
eBook Packages: Computer ScienceComputer Science (R0)