Skip to main content

On Connectedness of Discretized Objects

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

Abstract

A major problem in computer graphics, image processing, numerical analysis and other applied areas is constructing a relevant object discretization. In a recent work [1] we investigated an approach for constructing a connected discretization of a set A ⊆ ℝn by taking the integer points within an offset of A of a certain radius, and determined the minimal value of the offset radius which guarantees connectedness of the discretization, provided that A is path-connected. In the present paper we prove that the same results hold when A is connected but not necessarily path-connected. We also demonstrate similar facts about Hausdorff discretization, thus generalizing a theorem from [18]. The proofs combine approaches and techniques from [1] and [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brimkov, V.E., Barneva, R.P., Brimkov, B.: Connected distance-based rasterization of objects in arbitrary dimension. Graphical Models 73, 323–334 (2011)

    Article  Google Scholar 

  2. Brimkov, V.E., Barneva, R.P., Brimkov, B.: Minimal offsets that guarantee maximal or minimal connectivity of digital curves in nD. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 337–349. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Computer Graphics & Applications 17, 80–87 (1997)

    Article  Google Scholar 

  4. Engelking, R.: General Topology, Revised and Completed edn. Heldermann Verlag, Berlin (1989)

    MATH  Google Scholar 

  5. Heijmans, H.J.A.M.: Morphological discretization. In: Eckhardt, U., et al. (eds.) Geometrical Problems in Image Processing, pp. 99–106. Akademie Verlag, Berlin (1991)

    Google Scholar 

  6. Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, New York (1994)

    MATH  Google Scholar 

  7. Heijmans, H.J.A.M., Toet, A.: Morphological sampling. Comput. Vision, Graphics, Image Processing. Image Understanding 54, 384–400 (1991)

    Article  MATH  Google Scholar 

  8. Hocking, J.G., Young, G.S.: Topology. Dover Publications Inc., New York (1988)

    MATH  Google Scholar 

  9. Kaufman, A.: An algorithm for 3D scan conversion of polygons. In: Proc. Eurographics 1987, Amsterdam, The Netherlands, pp. 197–208 (1987)

    Google Scholar 

  10. Kaufman, A.: An algorithm for 3D scan conversion of parametric curves, surfaces, and volumes. Computer Graphics 21, 171–179 (1987)

    Article  MathSciNet  Google Scholar 

  11. Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. Computer 26, 51–64 (1993)

    Article  Google Scholar 

  12. Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  13. Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)

    Google Scholar 

  14. Krätzel, E.: Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin (1981)

    MATH  Google Scholar 

  15. Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1910)

    MATH  Google Scholar 

  16. Ronse, C., Tajine, M.: Discretization in Hausdorff Space. J. Math. Imaging Vision 12, 219–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17, 146–160 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tajine, M., Ronse, C.: Topological properties of Hausdorff discretization, and comparison to other discretization schemes. Theoretical Computer Science 283, 243–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tajine, M., Wagner, D., Ronse, C.: Hausdorff discretization and its comparison to other discretization schemes. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 399–410. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Wagner, D., Tajine, M., Ronse, C.: An approach to discretization based on Hausdorff metric, I. In: Proc. ISMM 1998, pp. 67–74. Kluwer Academic Publisher, Dordrecht (1998)

    Google Scholar 

  21. Widjaya, H., Möoller, T., Entezari, A.: Voxelization in common sampling lattices. In: Proc. 11th Pacific Conference on Computer Graphics and Applications, pp. 497–501 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brimkov, V.E. (2013). On Connectedness of Discretized Objects. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics