Skip to main content

Localization of Multi-pose and Occluded Facial Features via Sparse Shape Representation

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

  • 2829 Accesses

Abstract

Automatic facial feature localization plays an important role in many face identification and expression analysis algorithms. It is a challenging problem for real world images because of various face poses and occlusions. This paper proposes a unified framework to robustly locate multi-pose and occluded facial features. Instead of explicitly modeling the statistical point distribution, we use a sparse linear combination to approximate the observed shape, and hence alleviate the multi-pose problem. In addition, we use sparsity constraint to handle the outliers that can be caused by occlusions. We also model the initial misalignment and use convex optimization techniques to solve them simultaneously and efficiently. This proposed method has been extensively evaluated on both synthetic and real data, and the experimental results are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chellappa, R., Du, M., Turaga, P., Zhou, S.: Face tracking and recognition in video. Handbook of Face Recognition, 323–351 (2011)

    Google Scholar 

  2. Pantic, M., Patras, I.: Dynamics of facial expression: Recognition of facial actions and their temporal segments from face profile image sequences. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36, 433–449 (2006)

    Article  Google Scholar 

  3. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)

    Article  Google Scholar 

  4. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 681–685 (2001)

    Article  Google Scholar 

  5. Cristinacce, D., Cootes, T.F.: Feature detection and tracking with constrained local models. In: British Machine Vision Conference, pp. 929–938 (2006)

    Google Scholar 

  6. Wang, Y., Lucey, S., Cohn, J.F.: Enforcing convexity for improved alignment with constrained local models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  7. Cootes, T., Taylor, C.: A mixture model for representing shape variation. Image and Vision Computing 17, 567–573 (1999)

    Article  Google Scholar 

  8. Romdhani, S., Gong, S., Psarrou, R.: A multi-view nonlinear active shape model using kernel PCA. In: British Machine Vision Conference, pp. 483–492 (2007)

    Google Scholar 

  9. Tong, Y., Wang, Y., Zhu, Z., Ji, Q.: Robust facial feature tracking under varying face pose and facial expression. Pattern Recognition 40, 3195–3208 (2007)

    Article  MATH  Google Scholar 

  10. Zhou, Y., Gu, L., Zhang, H.J.: Bayesian tangent shape model: estimating shape and pose parameters via bayesian inference. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 109–116 (2003)

    Google Scholar 

  11. Gu, L., Kanade, T.: A generative shape regularization model for robust face alignment. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 413–426. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. International Journal of Computer Vision 61, 55–79 (2005)

    Article  Google Scholar 

  13. Tan, X., Song, F., Zhou, Z.H., Chen, S.: Enhanced pictorial structures for precise eye localization under incontrolled conditions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1621–1628 (2009)

    Google Scholar 

  14. Yang, F., Huang, J., Metaxas, D.: Sparse shape registration for occluded facial feature localization. In: Automatic Face and Gesture Recognition, pp. 272–277 (2011)

    Google Scholar 

  15. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory 52, 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  16. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 210–227 (2009)

    Article  Google Scholar 

  17. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: Sparse shape composition. Medical Image Analysis 16, 265–277 (2012)

    Article  Google Scholar 

  18. Li, Y., Feng, J.: Sparse representation shape model. In: IEEE International Conference on Image Processing, pp. 2733–2736 (2010)

    Google Scholar 

  19. Shan, S., Chang, Y., Gao, W., Cao, B., Yang, P.: Curse of mis-alignment in face recognition: Problem and a novel mis-alignment learning solution. In: International Conference on Automatic Face and Gesture Recognition, pp. 314–320 (2004)

    Google Scholar 

  20. Nguyen, M., De la Torre, F.: Learning image alignment without local minima for face detection and tracking. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 1–7 (2008)

    Google Scholar 

  21. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Symposium on Geometry Processing, pp. 175–184 (2004)

    Google Scholar 

  22. Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Martinez, A., Benavente, R.: AR face database. CVC Technical Report #24 (1998)

    Google Scholar 

  24. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Workshop on Applications of Computer Vision, pp. 138–142 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, Y., Zhang, S., Yang, F., Metaxas, D. (2013). Localization of Multi-pose and Occluded Facial Features via Sparse Shape Representation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics