Skip to main content

Collaborative Sparse Representation in Dissimilarity Space for Classification of Visual Information

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

Abstract

In this work we perform a thorough evaluation of the most popular CR-based classification scheme, the SRC, on the task of classification in dissimilarity space. We examine the performance utilizing a large set of public domain dissimilarity datasets mainly derived from classification problems relevant to visual information. We show that CR-based methods can exhibit remarkable performance in challenging situations characterized by extreme non-metric and non-Euclidean behavior, as well as limited number of available training samples per class. Furthermore, we investigate the structural qualities of a dataset necessitating the use of such classifiers. We demonstrate that CR-based methods have a clear advantage on dissimilarity data stemming from extended objects, manifold structures or a combination of these qualities. We also show that the induced sparsity during CR, is of great significance to the classification performance, especially in cases with small representative sets in the training data and large number of classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellman, R.: Dynamic Programming. Princeton University Press (1957)

    Google Scholar 

  2. Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recogni-tion. Pattern Recognition 26(12), 1797–1812 (1993)

    Article  Google Scholar 

  3. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

    Article  MathSciNet  Google Scholar 

  4. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (2001)

    MATH  Google Scholar 

  5. Duin, R.P.W., PÄ™kalska, E.: Non-Euclidean Dissimilarities: Causes and Informativeness. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR & SPR 2010. LNCS, vol. 6218, pp. 324–333. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Duin, R.P.W., Loog, M., PÄ™kalska, E.z., Tax, D.M.J.: Feature-Based Dissimilarity Space Classification. In: Ãœnay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 46–55. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Elhamifar, E., Sapiro, G., et al.: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  8. Fang, S.C., Chan, H.L.: Human Identification by quantifying similarity and dissimilarity in electro-cardiogram phase space. Pattern Recognition 42, 1824–1831 (2009)

    Article  Google Scholar 

  9. Fotopoulou, F., Theodorakopoulos, I., Economou, G.: Fusion in Phase Space for Shape Retrieval. In: EUSIPCO (2011)

    Google Scholar 

  10. Fotopoulou, F., Laskaris, N., Economou, G., Fotopoulos, S.: Advanced Leaf Image Retrieval via Multidimensional Embedding Sequence Similarity (MESS) Method. Pattern Analysis and Applications (2011)

    Google Scholar 

  11. Friedman, J.H., Rafsky, L.C.: Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests. Annals of Statistics 7(4), 697–717 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldfarb, L.: A unified approach to pattern recognition. Pattern Recognition 17, 575–582 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. Advances in Neural Information System Processing 11, 438–444 (1999)

    Google Scholar 

  14. Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Muller, K.R., Obermayer, K., Williamson, R.: Classification on proximity data with LP-machines. In: ICANN, pp. 304–309 (1999)

    Google Scholar 

  15. Hammer, B., Mokbel, B., Schleif, F.-M., Zhu, X.: Prototype-Based Classification of Dissimilarity Data. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 185–197. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. PAMI 15(9), 850–863 (1993)

    Article  Google Scholar 

  17. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with Non-Metric Distances: Image Retrieval and Class Representation. IEEE TPAMI 22(6), 583–600 (2000)

    Article  Google Scholar 

  18. Laub, J., Roth, V., Buhmannb, J.M., Müller, K.R.: On the information and representation of non-Euclidean pairwise data. Pattern Recognition, 1815–182639 (2006)

    Google Scholar 

  19. Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Sign Language Recognition by Combin-ing Statistical DTW and Independent Classification. PAMI 30, 2040–2046 (2008)

    Article  Google Scholar 

  20. Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)

    Article  MATH  Google Scholar 

  21. Pekalska, E., Duin, R.P.W.: The dissimilarity representation for pattern recognition. World Scientific (2005)

    Google Scholar 

  22. Plasencia-Calaña, Y., Orozco-Alzate, M., et al.: Selecting feature lines in generalized dissimilarity representations for pattern recognition. Digital Signal Processing (2012)

    Google Scholar 

  23. Schleif, F.-M., Zhu, X., Hammer, B.: A Conformal Classifier for Dissimilarity Data. AIAI (2), 234–243 (2012)

    Google Scholar 

  24. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigen-value problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  25. Castrodad, A., Sapiro, G.: Sparse Modeling of Human Actions from Motion Imagery. Int. J. Comput. Vision 100, 1–15 (2012)

    Article  Google Scholar 

  26. Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S.: Pose-based Human Action Recognition via Sparse Representation in Dissimilarity Space. J. Vis. Commun. Image R (2013)

    Google Scholar 

  27. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wilson, R., Hancock, E.: Spherical embedding and classification. In: SSPR (2010)

    Google Scholar 

  29. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. PAMI 31, 210–227 (2009)

    Article  Google Scholar 

  30. Xu, W., Wilson, R.C., Hancock, E.R.: Determining the Cause of Negative Dissimilarity Eigenvalues. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 589–597. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Xu, W., Wilson, R.C., Hancock, E.R.: Determining the Cause of Negative Dissimilarity Ei-genvalues. In: CAIP (2011)

    Google Scholar 

  32. Zhag, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: ICCV (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Theodorakopoulos, I., Economou, G., Fotopoulos, S. (2013). Collaborative Sparse Representation in Dissimilarity Space for Classification of Visual Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics