Abstract
In this work we perform a thorough evaluation of the most popular CR-based classification scheme, the SRC, on the task of classification in dissimilarity space. We examine the performance utilizing a large set of public domain dissimilarity datasets mainly derived from classification problems relevant to visual information. We show that CR-based methods can exhibit remarkable performance in challenging situations characterized by extreme non-metric and non-Euclidean behavior, as well as limited number of available training samples per class. Furthermore, we investigate the structural qualities of a dataset necessitating the use of such classifiers. We demonstrate that CR-based methods have a clear advantage on dissimilarity data stemming from extended objects, manifold structures or a combination of these qualities. We also show that the induced sparsity during CR, is of great significance to the classification performance, especially in cases with small representative sets in the training data and large number of classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellman, R.: Dynamic Programming. Princeton University Press (1957)
Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recogni-tion. Pattern Recognition 26(12), 1797–1812 (1993)
Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)
Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (2001)
Duin, R.P.W., Pękalska, E.: Non-Euclidean Dissimilarities: Causes and Informativeness. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR & SPR 2010. LNCS, vol. 6218, pp. 324–333. Springer, Heidelberg (2010)
Duin, R.P.W., Loog, M., Pękalska, E.z., Tax, D.M.J.: Feature-Based Dissimilarity Space Classification. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 46–55. Springer, Heidelberg (2010)
Elhamifar, E., Sapiro, G., et al.: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. In: Advances in Neural Information Processing Systems (2012)
Fang, S.C., Chan, H.L.: Human Identification by quantifying similarity and dissimilarity in electro-cardiogram phase space. Pattern Recognition 42, 1824–1831 (2009)
Fotopoulou, F., Theodorakopoulos, I., Economou, G.: Fusion in Phase Space for Shape Retrieval. In: EUSIPCO (2011)
Fotopoulou, F., Laskaris, N., Economou, G., Fotopoulos, S.: Advanced Leaf Image Retrieval via Multidimensional Embedding Sequence Similarity (MESS) Method. Pattern Analysis and Applications (2011)
Friedman, J.H., Rafsky, L.C.: Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests. Annals of Statistics 7(4), 697–717 (1979)
Goldfarb, L.: A unified approach to pattern recognition. Pattern Recognition 17, 575–582 (1984)
Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. Advances in Neural Information System Processing 11, 438–444 (1999)
Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Muller, K.R., Obermayer, K., Williamson, R.: Classification on proximity data with LP-machines. In: ICANN, pp. 304–309 (1999)
Hammer, B., Mokbel, B., Schleif, F.-M., Zhu, X.: Prototype-Based Classification of Dissimilarity Data. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 185–197. Springer, Heidelberg (2011)
Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. PAMI 15(9), 850–863 (1993)
Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with Non-Metric Distances: Image Retrieval and Class Representation. IEEE TPAMI 22(6), 583–600 (2000)
Laub, J., Roth, V., Buhmannb, J.M., Müller, K.R.: On the information and representation of non-Euclidean pairwise data. Pattern Recognition, 1815–182639 (2006)
Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Sign Language Recognition by Combin-ing Statistical DTW and Independent Classification. PAMI 30, 2040–2046 (2008)
Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)
Pekalska, E., Duin, R.P.W.: The dissimilarity representation for pattern recognition. World Scientific (2005)
Plasencia-Calaña, Y., Orozco-Alzate, M., et al.: Selecting feature lines in generalized dissimilarity representations for pattern recognition. Digital Signal Processing (2012)
Schleif, F.-M., Zhu, X., Hammer, B.: A Conformal Classifier for Dissimilarity Data. AIAI (2), 234–243 (2012)
Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigen-value problem. Neural Computation 10, 1299–1319 (1998)
Castrodad, A., Sapiro, G.: Sparse Modeling of Human Actions from Motion Imagery. Int. J. Comput. Vision 100, 1–15 (2012)
Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S.: Pose-based Human Action Recognition via Sparse Representation in Dissimilarity Space. J. Vis. Commun. Image R (2013)
Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)
Wilson, R., Hancock, E.: Spherical embedding and classification. In: SSPR (2010)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. PAMI 31, 210–227 (2009)
Xu, W., Wilson, R.C., Hancock, E.R.: Determining the Cause of Negative Dissimilarity Eigenvalues. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 589–597. Springer, Heidelberg (2011)
Xu, W., Wilson, R.C., Hancock, E.R.: Determining the Cause of Negative Dissimilarity Ei-genvalues. In: CAIP (2011)
Zhag, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: ICCV (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Theodorakopoulos, I., Economou, G., Fotopoulos, S. (2013). Collaborative Sparse Representation in Dissimilarity Space for Classification of Visual Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-41914-0_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41913-3
Online ISBN: 978-3-642-41914-0
eBook Packages: Computer ScienceComputer Science (R0)