Skip to main content

Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

  • 2966 Accesses

Abstract

Facial-expression data often appear in multiple views either due to head-movements or the camera position. Existing methods for multi-view facial expression recognition perform classification of the target expressions either by using classifiers learned separately for each view or by using a single classifier learned for all views. However, these approaches do not explore the fact that multi-view facial expression data are different manifestations of the same facial-expression-related latent content. To this end, we propose a Shared Gaussian Process Latent Variable Model (SGPLVM) for classification of multi-view facial expression data. In this model, we first learn a discriminative manifold shared by multiple views of facial expressions, and then apply a (single) facial expression classifier, based on k-Nearest-Neighbours (kNN), to the shared manifold. In our experiments on the MultiPIE database, containing real images of facial expressions in multiple views, we show that the proposed model outperforms the state-of-the-art models for multi-view facial expression recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pantic, M., Nijholt, A., Pentland, A., Huanag, T.: Human-centred intelligent human? computer interaction (hci2): how far are we from attaining it? IJAACS 1, 168–187 (2008)

    Article  Google Scholar 

  2. Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: Survey of an emerging domain. Image and Vision Computing 27, 1743–1759 (2009)

    Article  Google Scholar 

  3. Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on PAMI 31, 39–58 (2009)

    Article  Google Scholar 

  4. Moore, S., Bowden, R.: Local binary patterns for multi-view facial expression recognition. Computer Vision and Image Understanding 115, 541–558 (2011)

    Article  Google Scholar 

  5. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on PAMI 24 (2002)

    Google Scholar 

  6. Hu, Y., Zeng, Z., Yin, L., Wei, X., Tu, J., Huang, T.: A study of non-frontal-view facial expressions recognition. In: 19th Int’l Conf. on Pattern Recognition. IEEE (2008)

    Google Scholar 

  7. Hesse, N., Gehrig, T., Gao, H., Ekenel, H.K.: Multi-view facial expression recognition using local appearance features. In: 21st Int’l Conf. on Pattern Recognition (ICPR). IEEE (2012)

    Google Scholar 

  8. Dornaika, F., Orozco, J.: Real time 3d face and facial feature tracking. Journal of Real-Time Image Processing 2, 35–44 (2007)

    Article  Google Scholar 

  9. Rudovic, O., Pantic, M., Patras, I.: Coupled gaussian processes for pose-invariant facial expression recognition. IEEE Transactions on PAMI 35, 1357–1369 (2013)

    Article  Google Scholar 

  10. Rudovic, O., Patras, I., Pantic, M.: Regression-based multi-view facial expression recognition. In: Proceedings of Int’l Conf. Pattern Recognition (ICPR 2010), Istanbul, Turkey (2010)

    Google Scholar 

  11. Zheng, W., Tang, H., Lin, Z., Huang, T.S.: Emotion recognition from arbitrary view facial images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 490–503. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Tariq, U., Yang, J., Huang, T.S.: Multi-view facial expression recognition analysis with generic sparse coding feature. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part III. LNCS, vol. 7585, pp. 578–588. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE (1999)

    Google Scholar 

  14. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  15. Urtasun, R., Darrell, T.: Discriminative gaussian process latent variable model for classification. In: Proc. of the 24th International Conference on Machine Learning. ACM (2007)

    Google Scholar 

  16. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. The Journal of Machine Learning Research 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Rasmussen, C., Williams, C.: Gaussian processes for machine learning, vol. 1. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  18. Zhong, G., Li, W.J., Yeung, D.Y., Hou, X., Liu, C.L.: Gaussian process latent random field. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  19. Rue, H., Held, L.: Gaussian Markov random fields: theory and applications, vol. 104. Chapman & Hall (2005)

    Google Scholar 

  20. Shon, A., Grochow, K., Hertzmann, A., Rao, R.: Learning shared latent structure for image synthesis and robotic imitation. Advances in NIPS 18 (2006)

    Google Scholar 

  21. Ek, C., Lawrence, N.: Shared Gaussian Process Latent Variable Models. PhD thesis, Oxford Brookes University (2009)

    Google Scholar 

  22. Ek, C.H., Torr, P.H.S., Lawrence, N.D.: Gaussian process latent variable models for human pose estimation. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 2007. LNCS, vol. 4892, pp. 132–143. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Lawrence, N.D., Candela, J.Q.: Local distance preservation in the gp-lvm through back constraints. In: Proc. of the Twenty-Third Int’l Conf. on Machine Learning. ACM (2006)

    Google Scholar 

  24. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. IVC 28, 807–813 (2010)

    Article  Google Scholar 

  25. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: A semi-automatic methodology for facial landmark annotation. In: 5th Workshop on AMFG, Proc. of the Int’l Conf. CVPR-W 2013 (2013)

    Google Scholar 

  26. Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multiview analysis: A discriminative latent space. In: IEEE Conference on CVPR (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eleftheriadis, S., Rudovic, O., Pantic, M. (2013). Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics