Skip to main content

Optimising Conceptual Data Models through Profiling in Object Databases

  • Conference paper
Conceptual Modeling (ER 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8217))

Included in the following conference series:

  • 2116 Accesses

Abstract

Agile methods promote iterative development with short cycles, where user feedback from the previous iteration is used to refactor and improve the current version. For information systems development, we propose to extend this feedback loop by using database profiling information to propose adaptations to the conceptual model to improve performance. For every software release, our database profiler identifies and analyses navigational access patterns, and proposes model optimisations based on data characteristics, access patterns and a cost-benefit model. The proposed model optimisations are based on common database and data model refactoring patterns. The database profiler has been implemented as part of an open-source object database and integrated into an existing agile development environment, where the model optimisations are presented as part of the IDE. We evaluate our approach based on an example of agile development of a research publication system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fowler, M., Highsmith, J.: The Agile Manifesto. Software Development 9(8) (2001)

    Google Scholar 

  2. Ambler, S.W.: Agile Techniques for Object Databases (September 2005), http://www.db4o.com/about/productinformation/whitepapers/

  3. Zäschke, T., Zimmerli, C., Leone, S., Nguyen, M., Norrie, M.: Adaptive Model-Driven Information Systems Development for Object Databases. In: Proc. Intl. Conf. on Information Systems Development, ISD 2011 (2011)

    Google Scholar 

  4. Ley, M., et al.: The DBLP Computer Science Bibliography (March 2013), http://dblp.uni-trier.de/db/

  5. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database Design. Addison-Wesley (2006)

    Google Scholar 

  6. Chaudhuri, S., Narasayya, V.: Self-Tuning Database Systems: A Decade Of Progress. In: Proc. 33rd Intl. Conf. on Very Large Databases, VLDB 2007 (2007)

    Google Scholar 

  7. Codd, E.: A Relational Model of Data for Large Shared Data Banks. Communication of ACM 13(6), 377–387 (1970)

    Article  MATH  Google Scholar 

  8. Pinto, Y.: A Framework for Systematic Database Denormalization. Global Journal of Computer Science and Technology 9(4), 44–52 (2009)

    Google Scholar 

  9. Sanders, G., Shin, S.: Denormalization Effects on Performance of RDBMS. In: Proc. 34th Hawaii Intl. Conf. on System Sciences, HICSS 2001 (2001)

    Google Scholar 

  10. Objectivity: Objectivity/DB (2013), http://www.objectivity.com/

  11. Zäschke, T., Norrie, M.C.: Revisiting Schema Evolution in Object Databases in Support of Agile Development. In: Dearle, A., Zicari, R.V. (eds.) ICOODB 2010. LNCS, vol. 6348, pp. 10–24. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data & Knowledge Engineering 55(3), 243–276 (2005)

    Article  MathSciNet  Google Scholar 

  13. Proper, H.A., Halpin, T.A.: Conceptual Schema Optimisation - Database Optimisation before sliding down the Waterfall. Technical report, Department of Computer Science, University of Queensland, Brisbane, Australia (2004)

    Google Scholar 

  14. Aguilera, D., Gómez, C., Olivé, A.: A method for the definition and treatment of conceptual schema quality issues. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 501–514. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)

    Google Scholar 

  16. Zäschke, T., Leone, S., Norrie, M.C.: Optimising Schema Evolution Operation Sequences in Object Databases for Data Evolution. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 369–382. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zäschke, T., Leone, S., Gmünder, T., Norrie, M.C. (2013). Optimising Conceptual Data Models through Profiling in Object Databases. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds) Conceptual Modeling. ER 2013. Lecture Notes in Computer Science, vol 8217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41924-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41924-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41923-2

  • Online ISBN: 978-3-642-41924-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics