Abstract
Agile methods promote iterative development with short cycles, where user feedback from the previous iteration is used to refactor and improve the current version. For information systems development, we propose to extend this feedback loop by using database profiling information to propose adaptations to the conceptual model to improve performance. For every software release, our database profiler identifies and analyses navigational access patterns, and proposes model optimisations based on data characteristics, access patterns and a cost-benefit model. The proposed model optimisations are based on common database and data model refactoring patterns. The database profiler has been implemented as part of an open-source object database and integrated into an existing agile development environment, where the model optimisations are presented as part of the IDE. We evaluate our approach based on an example of agile development of a research publication system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fowler, M., Highsmith, J.: The Agile Manifesto. Software Development 9(8) (2001)
Ambler, S.W.: Agile Techniques for Object Databases (September 2005), http://www.db4o.com/about/productinformation/whitepapers/
Zäschke, T., Zimmerli, C., Leone, S., Nguyen, M., Norrie, M.: Adaptive Model-Driven Information Systems Development for Object Databases. In: Proc. Intl. Conf. on Information Systems Development, ISD 2011 (2011)
Ley, M., et al.: The DBLP Computer Science Bibliography (March 2013), http://dblp.uni-trier.de/db/
Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database Design. Addison-Wesley (2006)
Chaudhuri, S., Narasayya, V.: Self-Tuning Database Systems: A Decade Of Progress. In: Proc. 33rd Intl. Conf. on Very Large Databases, VLDB 2007 (2007)
Codd, E.: A Relational Model of Data for Large Shared Data Banks. Communication of ACM 13(6), 377–387 (1970)
Pinto, Y.: A Framework for Systematic Database Denormalization. Global Journal of Computer Science and Technology 9(4), 44–52 (2009)
Sanders, G., Shin, S.: Denormalization Effects on Performance of RDBMS. In: Proc. 34th Hawaii Intl. Conf. on System Sciences, HICSS 2001 (2001)
Objectivity: Objectivity/DB (2013), http://www.objectivity.com/
Zäschke, T., Norrie, M.C.: Revisiting Schema Evolution in Object Databases in Support of Agile Development. In: Dearle, A., Zicari, R.V. (eds.) ICOODB 2010. LNCS, vol. 6348, pp. 10–24. Springer, Heidelberg (2010)
Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data & Knowledge Engineering 55(3), 243–276 (2005)
Proper, H.A., Halpin, T.A.: Conceptual Schema Optimisation - Database Optimisation before sliding down the Waterfall. Technical report, Department of Computer Science, University of Queensland, Brisbane, Australia (2004)
Aguilera, D., Gómez, C., Olivé, A.: A method for the definition and treatment of conceptual schema quality issues. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 501–514. Springer, Heidelberg (2012)
Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
Zäschke, T., Leone, S., Norrie, M.C.: Optimising Schema Evolution Operation Sequences in Object Databases for Data Evolution. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 369–382. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zäschke, T., Leone, S., Gmünder, T., Norrie, M.C. (2013). Optimising Conceptual Data Models through Profiling in Object Databases. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds) Conceptual Modeling. ER 2013. Lecture Notes in Computer Science, vol 8217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41924-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-41924-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41923-2
Online ISBN: 978-3-642-41924-9
eBook Packages: Computer ScienceComputer Science (R0)