Abstract
SURF has emerged as one of the more popular feature descriptors and detectors in recent years. While considerably faster than SIFT, it is still considered too computationally expensive for many applications. In this paper, several algorithmic changes are proposed to create two new SURF like descriptors and a SURF like feature detector. The proposed changes have comparable stability to the reference implementation, yet a byte code implementation is able run several times faster than the native reference implementation and faster than all other open source implementations tested.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. Computer Vision and Image Understanding (CVIU) 110, 356–359 (2008)
Lowe, D.: Distinctive image features from scale-invariant keypoints, cascade filtering approach. International Journal of Computer Vision (IJCV) 60, 91–110 (2004)
Tola, E., Lepetit, V., Fua, P.: Daisy: an Efficient Dense Descriptor Applied to Wide Baseline Stereo. Pattern Analysis and Machine Intelligence 32, 815–830 (2010)
Juan, L., Gwon, O.: A Comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing (IJIP) 3, 143–152 (2009)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Abeles, P.: Boofcv (Version 0.5), http://boofcv.org
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, CVPR, pp. 511–518 (2001)
Simard, P., Bottou, L., Haffner, P., LeCun, Y.: A fast convolution algorithm for signal processing and neural networks. In: NIPS (1998)
Lindeberg, T.: Feature detection with automatic scale selection. IJCV 30, 79–116 (1998)
Brown, M., Lowe, D.: Invariant features from interest point groups. In: BMVC (2002)
Edelman, S., Intrator, N., Poggio, T.: Complex cells and object recognition (1997), http://kybele.psych.cornell.edu/~edelman/archive.html
Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)
Orlinski, A.: Pan-o-matic (Version 0.9.4), http://aorlinsk2.free.fr/panomatic/
Evans, C.: The opensurf computer vision library, http://www.chrisevansdev.com/computer-vision-opensurf.html (Build May 27, 2010)
Stromberg, A., Jojopotato, N.: Jopensurf (SVN r24) Note: Port of OpenSURF, http://code.google.com/p/jopensurf/
Liu, L., Mahon, I.: Opencv (Version 2.3.1 SVN r6879), http://opencv.willowgarage.com/wiki/
Bay, H., Gool, L.V.: Surf: Speeded up robust feature (Version 1.0.9), http://www.vision.ee.ethz.ch/~surf/
Fantacci, C., Martini, A., Mitreski, M.: Javasurf (SVN r4) Note: Refactored P-SURF, http://code.google.com/p/javasurf/
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)
Cornelis, N., Van Gool, L.: Fast scale invariant feature detection and matching on programmable graphics hardware. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2008 (2008)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vision 37, 151–172 (2000)
Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. International Journal of Computer Vision 94, 335–360 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abeles, P. (2013). Speeding Up SURF. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-41939-3_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41938-6
Online ISBN: 978-3-642-41939-3
eBook Packages: Computer ScienceComputer Science (R0)