Skip to main content

Speeding Up SURF

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

Abstract

SURF has emerged as one of the more popular feature descriptors and detectors in recent years. While considerably faster than SIFT, it is still considered too computationally expensive for many applications. In this paper, several algorithmic changes are proposed to create two new SURF like descriptors and a SURF like feature detector. The proposed changes have comparable stability to the reference implementation, yet a byte code implementation is able run several times faster than the native reference implementation and faster than all other open source implementations tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. Computer Vision and Image Understanding (CVIU) 110, 356–359 (2008)

    Article  Google Scholar 

  2. Lowe, D.: Distinctive image features from scale-invariant keypoints, cascade filtering approach. International Journal of Computer Vision (IJCV) 60, 91–110 (2004)

    Article  Google Scholar 

  3. Tola, E., Lepetit, V., Fua, P.: Daisy: an Efficient Dense Descriptor Applied to Wide Baseline Stereo. Pattern Analysis and Machine Intelligence 32, 815–830 (2010)

    Article  Google Scholar 

  4. Juan, L., Gwon, O.: A Comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing (IJIP) 3, 143–152 (2009)

    Google Scholar 

  5. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Abeles, P.: Boofcv (Version 0.5), http://boofcv.org

  7. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, CVPR, pp. 511–518 (2001)

    Google Scholar 

  8. Simard, P., Bottou, L., Haffner, P., LeCun, Y.: A fast convolution algorithm for signal processing and neural networks. In: NIPS (1998)

    Google Scholar 

  9. Lindeberg, T.: Feature detection with automatic scale selection. IJCV 30, 79–116 (1998)

    Article  Google Scholar 

  10. Brown, M., Lowe, D.: Invariant features from interest point groups. In: BMVC (2002)

    Google Scholar 

  11. Edelman, S., Intrator, N., Poggio, T.: Complex cells and object recognition (1997), http://kybele.psych.cornell.edu/~edelman/archive.html

  12. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Orlinski, A.: Pan-o-matic (Version 0.9.4), http://aorlinsk2.free.fr/panomatic/

  14. Evans, C.: The opensurf computer vision library, http://www.chrisevansdev.com/computer-vision-opensurf.html (Build May 27, 2010)

  15. Stromberg, A., Jojopotato, N.: Jopensurf (SVN r24) Note: Port of OpenSURF, http://code.google.com/p/jopensurf/

  16. Liu, L., Mahon, I.: Opencv (Version 2.3.1 SVN r6879), http://opencv.willowgarage.com/wiki/

  17. Bay, H., Gool, L.V.: Surf: Speeded up robust feature (Version 1.0.9), http://www.vision.ee.ethz.ch/~surf/

  18. Fantacci, C., Martini, A., Mitreski, M.: Javasurf (SVN r4) Note: Refactored P-SURF, http://code.google.com/p/javasurf/

  19. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  20. Cornelis, N., Van Gool, L.: Fast scale invariant feature detection and matching on programmable graphics hardware. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2008 (2008)

    Google Scholar 

  21. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vision 37, 151–172 (2000)

    Article  MATH  Google Scholar 

  22. Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. International Journal of Computer Vision 94, 335–360 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abeles, P. (2013). Speeding Up SURF. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics