Skip to main content

Gender Recognition Using Fusion of Local and Global Facial Features

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

Abstract

Human perception of the face involves the observation of both coarse (global) and detailed (local) features of the face to identify and categorize a person. Face categorization involves finding common visual cues, such as gender, race and age, which could be used as a precursor to a face recognition system to improve recognition rates. In this paper, we investigate the fusion of both global and local features for gender classification. Global features are obtained using the principal component analysis (PCA) and discrete cosine transformation (DCT) approaches. A spatial local binary pattern (LBP) approach augmented with a two-dimensional DCT approach has been used to find the local features. The performance of the proposed approach has been investigated through extensive experiments performed on FERET database. The proposed approach gives a recognition accuracy of 98.16% on FERET database. Comparisons with some of the existing techniques have shown a marked reduction in number of features used per image to produce results more efficiently and without loss of accuracy for gender classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, S., Bebis, G., Hussain, M., Muhammad, G., Mirza, A.M.: Unsuper-vised discovery of visual face categories. International Journal on Artificial Intelligence Tools (May 2012) (accepted) doi: 10.1142/S0218213012500297

    Google Scholar 

  2. Brigham, J.: The influence of race on face recognition. In: Ellis, H., Jeeves, M., Newcombe, F. (eds.) Aspects of Face Processing, pp. 170–177 (1986)

    Google Scholar 

  3. O’Toole, A., Peterson, J., Deffenbacher, K.: An other-race effect for classifying faces by sex. Perception 25, 669–676 (1996)

    Article  Google Scholar 

  4. Phillips, P.J., Jiang, F., Narvekar, A., Ayyad, J., O’Toole, A.: An other-race effect for face recognition algorithms. ACM Transactions on Applied Perception 8(2) (2011)

    Google Scholar 

  5. Cheng, Y.D., O’Toole, A., Abdi, H.: Classifying adults’ and children’s faces by sex: Computational investigations of subcategorical feature encoding. Cognitive Science 25(5), 819–838 (2001)

    Article  Google Scholar 

  6. Baudouin, J.Y., Tiberghien, G.: Gender is a dimension of face recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition 28(2), 362–365 (2002)

    Article  Google Scholar 

  7. Yamaguchi, M.K., Hirukawa, T., Kanazawa, S.: Judgement of gender through facial parts. Perception 24, 563–575 (1995)

    Article  Google Scholar 

  8. Wild, H., Barrett, S., Spence, M., O’Toole, A., Chenh, Y., Brooke, J.: Recognition and sex classification of adults’ and children’s faces: examining performance in the absence of sex-stereostypes cues. Journal of Experimental Child Psychology 77, 269–291 (2000)

    Article  Google Scholar 

  9. Golom, A., Lawrence, D.T., Sejnowski, T.J.: SEXNET: A neural network identifies gender from human faces. In: Advances in Neural Information Processing Systems, vol. 3, pp. 572–577 (1991)

    Google Scholar 

  10. Brunelli, R., Poggio, T.: HyperBF network for gender classification. In: DARPA Image Understanding Workshop, pp. 311–314 (1992)

    Google Scholar 

  11. Gutta, S., Wechsler, H., Phillips, P.: Gender and ethnic classification of face images. In: 3rd IEEE International Conference on AUtomatic Face and Desture Recognition, FG 1998, pp. 194–199 (1998)

    Google Scholar 

  12. Moghaddam, B., Yang, M.-H.: Gender classification with support vector machines. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 306–311 (2000)

    Google Scholar 

  13. Yang, Z., Li, M., Ai, H.: An experimental study on automatic face gender classification. In: Proc. IEEE Int. Conf. on Pattern Recognition, pp. 1099–1102 (2006)

    Google Scholar 

  14. Baluja, S., Rowley, H.: Boosting sex identification performance. International Journal of Computer Vision 71(1), 111–119 (2007)

    Article  Google Scholar 

  15. Lu, L., Shi, P.: Fusion of multiple facial regions for expression-invariant gender classification. IEICE Electronics Express 6(10), 587–593 (2009)

    Article  Google Scholar 

  16. Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31(11), 1422–1427 (2010)

    Article  Google Scholar 

  17. Zhao, W., Cellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Surveys, 399–458 (2003)

    Google Scholar 

  18. Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face Recognition by Humans: 199 Results All Computer Vision Researchers Should Know About. Proceedings of the IEEE 94(11), 1948–1962 (2006)

    Article  Google Scholar 

  19. Ng, C.B., Tay, Y.H., Goi, B.-M.: Recognizing Human Gender in Computer Vision: A Survey. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 335–346. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Ojala, T., Pietkainen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  21. Ojala, T., Pietkainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rota-tion Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  22. Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 179–186. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Liu, H., Sun, J., Liu, L., Zhang, H.: Feature selection with dynamic mutual information. Journal of Pattern Recognition 42(7) (July 2009)

    Google Scholar 

  24. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender Classification Based on Boosting Local Binary Pattern. In: Wang, J., Yi, Z., Å»urada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 194–201. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Lian, H., Lu, B.: Multi-view gender classification using multi-resolution local binary patterns and support vector machines. International Journal of Neural Systems 17(6), 479–487 (2007)

    Article  Google Scholar 

  27. Phillips, P.J., Hyeonjoon, M., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  28. Abdukirim, T., Hussain, M., Niijima, K., Takano, S.: The Dyadic Lifting Schemes and the Denoising of Digital Images. International Journal of Wavelets, Multiresolution and Information Processing 6(3), 331–351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirza, A.M., Hussain, M., Almuzaini, H., Muhammad, G., Aboalsamh, H., Bebis, G. (2013). Gender Recognition Using Fusion of Local and Global Facial Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics