Abstract
Human perception of the face involves the observation of both coarse (global) and detailed (local) features of the face to identify and categorize a person. Face categorization involves finding common visual cues, such as gender, race and age, which could be used as a precursor to a face recognition system to improve recognition rates. In this paper, we investigate the fusion of both global and local features for gender classification. Global features are obtained using the principal component analysis (PCA) and discrete cosine transformation (DCT) approaches. A spatial local binary pattern (LBP) approach augmented with a two-dimensional DCT approach has been used to find the local features. The performance of the proposed approach has been investigated through extensive experiments performed on FERET database. The proposed approach gives a recognition accuracy of 98.16% on FERET database. Comparisons with some of the existing techniques have shown a marked reduction in number of features used per image to produce results more efficiently and without loss of accuracy for gender classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yang, S., Bebis, G., Hussain, M., Muhammad, G., Mirza, A.M.: Unsuper-vised discovery of visual face categories. International Journal on Artificial Intelligence Tools (May 2012) (accepted) doi: 10.1142/S0218213012500297
Brigham, J.: The influence of race on face recognition. In: Ellis, H., Jeeves, M., Newcombe, F. (eds.) Aspects of Face Processing, pp. 170–177 (1986)
O’Toole, A., Peterson, J., Deffenbacher, K.: An other-race effect for classifying faces by sex. Perception 25, 669–676 (1996)
Phillips, P.J., Jiang, F., Narvekar, A., Ayyad, J., O’Toole, A.: An other-race effect for face recognition algorithms. ACM Transactions on Applied Perception 8(2) (2011)
Cheng, Y.D., O’Toole, A., Abdi, H.: Classifying adults’ and children’s faces by sex: Computational investigations of subcategorical feature encoding. Cognitive Science 25(5), 819–838 (2001)
Baudouin, J.Y., Tiberghien, G.: Gender is a dimension of face recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition 28(2), 362–365 (2002)
Yamaguchi, M.K., Hirukawa, T., Kanazawa, S.: Judgement of gender through facial parts. Perception 24, 563–575 (1995)
Wild, H., Barrett, S., Spence, M., O’Toole, A., Chenh, Y., Brooke, J.: Recognition and sex classification of adults’ and children’s faces: examining performance in the absence of sex-stereostypes cues. Journal of Experimental Child Psychology 77, 269–291 (2000)
Golom, A., Lawrence, D.T., Sejnowski, T.J.: SEXNET: A neural network identifies gender from human faces. In: Advances in Neural Information Processing Systems, vol. 3, pp. 572–577 (1991)
Brunelli, R., Poggio, T.: HyperBF network for gender classification. In: DARPA Image Understanding Workshop, pp. 311–314 (1992)
Gutta, S., Wechsler, H., Phillips, P.: Gender and ethnic classification of face images. In: 3rd IEEE International Conference on AUtomatic Face and Desture Recognition, FG 1998, pp. 194–199 (1998)
Moghaddam, B., Yang, M.-H.: Gender classification with support vector machines. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 306–311 (2000)
Yang, Z., Li, M., Ai, H.: An experimental study on automatic face gender classification. In: Proc. IEEE Int. Conf. on Pattern Recognition, pp. 1099–1102 (2006)
Baluja, S., Rowley, H.: Boosting sex identification performance. International Journal of Computer Vision 71(1), 111–119 (2007)
Lu, L., Shi, P.: Fusion of multiple facial regions for expression-invariant gender classification. IEICE Electronics Express 6(10), 587–593 (2009)
Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31(11), 1422–1427 (2010)
Zhao, W., Cellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Surveys, 399–458 (2003)
Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face Recognition by Humans: 199 Results All Computer Vision Researchers Should Know About. Proceedings of the IEEE 94(11), 1948–1962 (2006)
Ng, C.B., Tay, Y.H., Goi, B.-M.: Recognizing Human Gender in Computer Vision: A Survey. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 335–346. Springer, Heidelberg (2012)
Ojala, T., Pietkainen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29(1), 51–59 (1996)
Ojala, T., Pietkainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rota-tion Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 179–186. Springer, Heidelberg (2004)
Liu, H., Sun, J., Liu, L., Zhang, H.: Feature selection with dynamic mutual information. Journal of Pattern Recognition 42(7) (July 2009)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender Classification Based on Boosting Local Binary Pattern. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 194–201. Springer, Heidelberg (2006)
Lian, H., Lu, B.: Multi-view gender classification using multi-resolution local binary patterns and support vector machines. International Journal of Neural Systems 17(6), 479–487 (2007)
Phillips, P.J., Hyeonjoon, M., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)
Abdukirim, T., Hussain, M., Niijima, K., Takano, S.: The Dyadic Lifting Schemes and the Denoising of Digital Images. International Journal of Wavelets, Multiresolution and Information Processing 6(3), 331–351 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mirza, A.M., Hussain, M., Almuzaini, H., Muhammad, G., Aboalsamh, H., Bebis, G. (2013). Gender Recognition Using Fusion of Local and Global Facial Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-41939-3_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41938-6
Online ISBN: 978-3-642-41939-3
eBook Packages: Computer ScienceComputer Science (R0)