Skip to main content

Storygraph: Telling Stories from Spatio-temporal Data

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

Abstract

A major task of spatio-temporal data analysis is to discover relationships and patterns among spatially and temporally scattered events. A most common analytic method is to plot them on a 3D chart with latitude, longitude and time being the three dimensions. The first drawback of this technique is that it fails to scale well when there are thousands of concentrated events since they suffer from cluttering, occlusion and other limitations of 3D plots. Second, it is hard to track the time component if the events are clustered in a region. To overcome these, we present a novel 2D visualization technique called Storygraph that provides an integrated view of location and time. Based on Storygraph, we also present storylines which show the movement of the characters over time. Finally, we present two case studies to demonstrate the effectiveness of the Storygraph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hägerstrand, T., et al.: Time-geography: focus on the corporeality of man, society, and environment. The Science and Praxis of Complexity, 193–216 (1985)

    Google Scholar 

  2. Aigner, W., Miksch, S., Mller, W., Schumann, H., Tominski, C.: Visualizing time-oriented dataa systematic view. Computers and Graphics 31, 401–409 (2007)

    Article  Google Scholar 

  3. Aigner, W., Miksch, S., Muller, W., Schumann, H., Tominski, C.: Visual methods for analyzing time-oriented data. IEEE Transactions on Visualization and Computer Graphics 14, 47–60 (2008)

    Article  Google Scholar 

  4. Fisher, D., Hoff, A., Robertson, G., Hurst, M.: Narratives: A visualization to track narrative events as they develop. In: Proceedings of IEEE Symposium on Visual Analytics Science and Technology, pp. 115–122 (2008)

    Google Scholar 

  5. Vrotsou, K., Johansson, J., Cooper, M.: Activitree: Interactive visual exploration of sequences in event-based data using graph similarity. IEEE Transactions on Visualization and Computer Graphics 15, 945–952 (2009)

    Article  Google Scholar 

  6. Javed, W., McDonnel, B., Elmqvist, N.: Graphical perception of multiple time series. IEEE Transactions on Visualization and Computer Graphics 16, 927–934 (2010)

    Article  Google Scholar 

  7. Gschwandtner, T., Aigner, W., Kaiser, K., Miksch, S., Seyfang, A.: Carecruiser: Exploring and visualizing plans, events, and effects interactively. In: Proceedings of IEEE Pacific Visualization Symposium (PacificVis), pp. 43–50 (2011)

    Google Scholar 

  8. Geng, Z., Peng, Z., Laramee, R., Walker, R., Roberts, J.: Angular histograms: Frequency-based visualizations for large, high dimensional data. IEEE Transactions on Visualization and Computer Graphics 17, 2572–2580 (2011)

    Article  Google Scholar 

  9. Zhao, J., Chevalier, F., Pietriga, E., Balakrishnan, R.: Exploratory analysis of time-series with chronolenses. IEEE Transactions on Visualization and Computer Graphics 17, 2422–2431 (2011)

    Article  Google Scholar 

  10. Krstajic, M., Bertini, E., Keim, D.: Cloudlines: Compact display of event episodes in multiple time-series. IEEE Transactions on Visualization and Computer Graphics 17, 2432–2439 (2011)

    Article  Google Scholar 

  11. Asgary, A., Ghaffari, A., Levy, J.: Spatial and temporal analyses of structural fire incidents and their causes: A case of toronto, canada. Fire Safety Journal 45, 44–57 (2010)

    Article  Google Scholar 

  12. Plug, C., Xia, J.C., Caulfield, C.: Spatial and temporal visualisation techniques for crash analysis. Accident Analysis and Prevention 43, 1937–1946 (2011)

    Article  Google Scholar 

  13. Jern, M., Franzen, J.: “Geoanalytics” - exploring spatio-temporal and multivariate data. In: Proceedings of Tenth International Conference on Information Visualization, pp. 25–31 (2006)

    Google Scholar 

  14. Maciejewski, R., Rudolph, S., Hafen, R., Abusalah, A., Yakout, M., Ouzzani, M., Cleveland, W., Grannis, S., Ebert, D.: A visual analytics approach to understanding spatiotemporal hotspots. IEEE Transactions on Visualization and Computer Graphics 16, 205–220 (2010)

    Article  Google Scholar 

  15. Gatalsky, P., Andrienko, N., Andrienko, G.: Interactive analysis of event data using space-time cube. In: Proceedings of the Eighth International Conference on Information Visualisation, pp. 145–152 (2004)

    Google Scholar 

  16. Tominski, C., Schulze-Wollgast, P., Schumann, H.: 3D information visualization for time dependent data on maps. In: Proceedings of the Ninth International Conference on Information Visualisation, pp. 175–181 (2005)

    Google Scholar 

  17. Adrienko, G., Adrienko, N., Mladenov, M., Mock, M., Politz, C.: Identifying place histories from activity traces with an eye to parameter impact. IEEE Transactions on Visualization and Computer Graphics 18, 675–688 (2012)

    Article  Google Scholar 

  18. Landesberger, T.V., Bremm, S., Andrienko, N., Adrienko, G., Tekusova, M.: Visual analytics for categoric spatio-temporal data. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology (VAST 2012), pp. 183–192 (2012)

    Google Scholar 

  19. Shaw, S.L., Yu, H.: A gis-based time-geographic approach of studying individual activities and interactions in a hybrid physical virtual space. Journal of Transport Geography 17, 141–149 (2009) ICT and the Shaping of Access, Mobility and Everyday Life

    Google Scholar 

  20. Guardian.co.uk: Afghanistan war logs 2003-2010 (2010)

    Google Scholar 

  21. UXO-LAO: Lao national unexploded ordnance programme annual report 2007 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shrestha, A., Zhu, Y., Miller, B., Zhao, Y. (2013). Storygraph: Telling Stories from Spatio-temporal Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics