Skip to main content

Identities for Embedded Systems Enabled by Physical Unclonable Functions

  • Chapter
Number Theory and Cryptography

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8260))

Abstract

Embedded systems, such as automotive control units, industrial automation systems, RFID tags or mobile devices are dominated by integrated circuits implementing their functionality. Since these systems operate in increasingly networked or untrusted environments, their protection against attacks and malicious manipulations becomes a critical security issue. Physical Unclonable Functions (PUFs) represent an interesting solution to enable security on embedded systems, since they allow identification and authentication of CMOS devices without non-volatile memory. In this paper, we explain benefits and applications of PUFs and give an overview of popular implementations. Further, we show that PUFs face hardware as well as modeling attacks. Therefore, specific analyses and hardening has to be performed, in order to establish PUFs as a reliable security primitive for embedded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed Systems, 1st edn. John Wiley & Sons, Inc., New York (2001)

    Google Scholar 

  2. Beckmann, N., Potkonjak, M.: Hardware-based public-key cryptography with public physically unclonable functions. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 206–220. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: The bistable ring PUF: A new architecture for strong physical unclonable functions. In: IEEE Int. Symposium on Hardware-Oriented Security and Trust (June 2011)

    Google Scholar 

  5. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Esbach, T., Fumy, W., Kulikovska, O., Merli, D., Schuster, D., Stumpf, F.: A new security architecture for smartcards utilizing PUFs. In: Proceedings of the 14th Information Security Solutions Europe Conference (ISSE 2012). Vieweg+Teubner Verlag (2012)

    Google Scholar 

  7. Falliere, N., Murchu, L.O., Chien, E.: W32.stuxnet dossier. Technical report, Symantex Security Response (February 2011)

    Google Scholar 

  8. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: CCS 2002: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 148–160. ACM, New York (2002)

    Google Scholar 

  10. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Hiller, M., Merli, D., Stumpf, F., Sigl, G.: Complementary IBS: Application specific error correction for PUFs. In: 2012 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 1–6 (June 2012)

    Google Scholar 

  12. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  13. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard processors. In: WOST 1999: Proceedings of the USENIX Workshop on Smartcard Technology on USENIX Workshop on Smartcard Technology, p. 2. USENIX Association, Berkeley (1999)

    Google Scholar 

  15. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462 (May 2010)

    Google Scholar 

  16. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

    Google Scholar 

  17. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft decision helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., Sigl, G.: Localized electromagnetic analysis of RO PUFs. In: Proceedings of the IEEE Int. Symposium of Hardware-Oriented Security and Trust. IEEE (June 2013)

    Google Scholar 

  19. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FPGA RO PUFs and countermeasures. In: 6th Workshop on Embedded Systems Security (WESS 2011), Taipei, Taiwan. ACM (October 2011)

    Google Scholar 

  20. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-channel analysis of PUFs and fuzzy extractors. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 33–47. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Merli, D., Stumpf, F., Sigl, G.: Protecting PUF error correction by codeword masking. Cryptology ePrint Archive, Report 2013/334 (2013), http://eprint.iacr.org/2013/334

  22. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smard Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Rührmair, U.: Simpl systems: On a public key variant of physical unclonable functions. Technical report, Cryptology ePrint Archive, International Association for Cryptologic Research (2009)

    Google Scholar 

  24. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 237–249. ACM, New York (2010)

    Chapter  Google Scholar 

  25. Skorobogatov, S.P.: Semi-invasive attacks – A new approach to hardware security analysis. Technical Report UCAM-CL-TR-630, University of Cambridge, Computer Laboratory (April 2005)

    Google Scholar 

  26. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: 44th ACM/IEEE Design Automation Conference, DAC 2007, pp. 9–14 (2007)

    Google Scholar 

  27. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Yu, M.-D.M., Devadas, S.: Secure and robust error correction for physical unclonable functions. IEEE Des. Test 27(1), 48–65 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merli, D., Sigl, G., Eckert, C. (2013). Identities for Embedded Systems Enabled by Physical Unclonable Functions. In: Fischlin, M., Katzenbeisser, S. (eds) Number Theory and Cryptography. Lecture Notes in Computer Science, vol 8260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42001-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42001-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42000-9

  • Online ISBN: 978-3-642-42001-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics