Abstract
Compact representations are explicit representations of algebraic numbers with size polynomial in the logarithm of their height. These representations enable much easier manipulations with larger algebraic numbers than would be possible using a standard representation and are necessary, for example, in short certificates for the unit group and ideal class group. In this paper, we present two improvements that can be used together to reduce significantly the sizes of compact representations in real quadratic fields. We provide analytic and numerical evidence demonstrating the performance of our methods, and suggesting that further improvements using obvious extensions are likely not possible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avanzi, R., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication using double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)
Buchmann, J., Thiel, C., Williams, H.C.: Short representation of quadratic integers, Mathematics and its Applications, vol. 325, pp. 159–185. Kluwer Academic Publishers, Amsterdam (1995)
Buchmann, J., Vollmer, U.: Binary Quadratic Forms, Algorithms and Computation in Mathematics, vol. 20. Springer (2007)
Cohen, H.: A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 4th edn., vol. 138. Springer, New York (2000)
Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)
Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponentiation. Information Processing Letters 66, 155–159 (1998)
Dixon, V., Jacobson Jr., M.J., Scheidler, R.: Improved exponentiation and key agreement in the infrastructure of a real quadratic field. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 214–233. Springer, Heidelberg (2012)
Doche, C., Imbert, L.: Extended double-base number system with applications to elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)
Fung, G.W., Williams, H.C.: Compact representation of the fundamental unit in a complex cubic field (1991) (unpublished manuscript)
de Haan, R.: A fast, rigorous technique for verifying the regulator of a real quadratic field. Master’s thesis, University of Amsterdam (2004)
Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)
Hühnlein, D., Paulus, S.: On the implementation of cryptosystems based on real quadratic number fields (extended abstract). In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 288–302. Springer, Heidelberg (2001)
Imbert, L., Jacobson Jr., M.J., Schmidt, A.: Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications 4(2), 237–260 (2010)
Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: The efficiency and security of a real quadratic field based key exchange protocol. In: Alster, K., Urbanowicz, J., Williams, H.C. (eds.) Public-Key Cryptography and Computational Number Theory, September 11-15 (2000); Walter de Gruyter GmbH & Co., Warsaw (2001)
Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: An improved real quadratic field based key exchange procedure. J. Cryptology 19, 211–239 (2006)
Jacobson Jr., M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in Mathematics. Springer (2009)
Lagarias, J.C.: Succinct certificates for the solvability of binary quadratic diophantine equations (extended abstract). In: Proc. 20th IEEE Symp. on Foundations of Computer Science, pp. 47–54 (1979)
Lagarias, J.C.: Succinct certificates for the solvability of binary quadratic diophantine equations. Tech. Rep. Technical Memorandum 81-11216-54, Bell Labs, 28 (1981)
Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)
Shanks, D.: The infrastructure of a real quadratic field and its applications. In: Proc. 1972 Number Theory Conference, University of Colorado, Boulder, pp. 217–224 (1972)
Silvester, A.K.: Improving regulator verification and compact representations in real quadratic fields. Ph.D. thesis, University of Calgary, Calgary, Alberta (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Silvester, A.K., Jacobson, M.J., Williams, H.C. (2013). Shorter Compact Representations in Real Quadratic Fields. In: Fischlin, M., Katzenbeisser, S. (eds) Number Theory and Cryptography. Lecture Notes in Computer Science, vol 8260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42001-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-42001-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-42000-9
Online ISBN: 978-3-642-42001-6
eBook Packages: Computer ScienceComputer Science (R0)