Skip to main content

Shorter Compact Representations in Real Quadratic Fields

  • Chapter
Number Theory and Cryptography

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8260))

Abstract

Compact representations are explicit representations of algebraic numbers with size polynomial in the logarithm of their height. These representations enable much easier manipulations with larger algebraic numbers than would be possible using a standard representation and are necessary, for example, in short certificates for the unit group and ideal class group. In this paper, we present two improvements that can be used together to reduce significantly the sizes of compact representations in real quadratic fields. We provide analytic and numerical evidence demonstrating the performance of our methods, and suggesting that further improvements using obvious extensions are likely not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avanzi, R., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication using double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Buchmann, J., Thiel, C., Williams, H.C.: Short representation of quadratic integers, Mathematics and its Applications, vol. 325, pp. 159–185. Kluwer Academic Publishers, Amsterdam (1995)

    Google Scholar 

  3. Buchmann, J., Vollmer, U.: Binary Quadratic Forms, Algorithms and Computation in Mathematics, vol. 20. Springer (2007)

    Google Scholar 

  4. Cohen, H.: A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 4th edn., vol. 138. Springer, New York (2000)

    Google Scholar 

  5. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponentiation. Information Processing Letters 66, 155–159 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dixon, V., Jacobson Jr., M.J., Scheidler, R.: Improved exponentiation and key agreement in the infrastructure of a real quadratic field. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 214–233. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Doche, C., Imbert, L.: Extended double-base number system with applications to elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Fung, G.W., Williams, H.C.: Compact representation of the fundamental unit in a complex cubic field (1991) (unpublished manuscript)

    Google Scholar 

  10. de Haan, R.: A fast, rigorous technique for verifying the regulator of a real quadratic field. Master’s thesis, University of Amsterdam (2004)

    Google Scholar 

  11. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)

    MATH  Google Scholar 

  12. Hühnlein, D., Paulus, S.: On the implementation of cryptosystems based on real quadratic number fields (extended abstract). In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 288–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Imbert, L., Jacobson Jr., M.J., Schmidt, A.: Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications 4(2), 237–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: The efficiency and security of a real quadratic field based key exchange protocol. In: Alster, K., Urbanowicz, J., Williams, H.C. (eds.) Public-Key Cryptography and Computational Number Theory, September 11-15 (2000); Walter de Gruyter GmbH & Co., Warsaw (2001)

    Google Scholar 

  15. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: An improved real quadratic field based key exchange procedure. J. Cryptology 19, 211–239 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jacobson Jr., M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in Mathematics. Springer (2009)

    Google Scholar 

  17. Lagarias, J.C.: Succinct certificates for the solvability of binary quadratic diophantine equations (extended abstract). In: Proc. 20th IEEE Symp. on Foundations of Computer Science, pp. 47–54 (1979)

    Google Scholar 

  18. Lagarias, J.C.: Succinct certificates for the solvability of binary quadratic diophantine equations. Tech. Rep. Technical Memorandum 81-11216-54, Bell Labs, 28 (1981)

    Google Scholar 

  19. Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)

    Article  MathSciNet  Google Scholar 

  20. Shanks, D.: The infrastructure of a real quadratic field and its applications. In: Proc. 1972 Number Theory Conference, University of Colorado, Boulder, pp. 217–224 (1972)

    Google Scholar 

  21. Silvester, A.K.: Improving regulator verification and compact representations in real quadratic fields. Ph.D. thesis, University of Calgary, Calgary, Alberta (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silvester, A.K., Jacobson, M.J., Williams, H.C. (2013). Shorter Compact Representations in Real Quadratic Fields. In: Fischlin, M., Katzenbeisser, S. (eds) Number Theory and Cryptography. Lecture Notes in Computer Science, vol 8260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42001-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42001-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42000-9

  • Online ISBN: 978-3-642-42001-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics