Skip to main content

A Hybrid Cancer Prognosis System Based on Semi-Supervised Learning and Decision Trees

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8227))

Included in the following conference series:

Abstract

Diverse machine learning models have applied to cancer survivability prediction. But most of them tend to report only the performance of the model. However, in order to help medical specialists to establish a treatment plan by using machine learning models, it is more pragmatic to elucidate which variables (markers) have most significantly influenced to the resulting outcome of cancer. This motivated us to propose a hybrid approach of two machine learning models, semi-supervised learning co-training and decision trees. The former performs prediction for cancer survivability, and the latter post-processes the results mainly focusing on which variables are more highly ranked. The proposed method was tested on the breast cancer survivability problem based on the surveillance, epidemiology, and end results database for breast cancer (SEER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society, http://www.cancer.org

  2. National Cancer Institute. Breast Cancer Statistics, USA (2010), http://www.cancer.gov/cancertopics/types/breast (accessed July 11, 2011)

  3. Sun, Y., Goodison, S., Li, J., Liu, L., Farmerie, W.: Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23, 30–37 (2007)

    Article  Google Scholar 

  4. Khan, U., Shin, H., Choi, J.P., Kim, M.: Wfdt - Weighted Fuzzy Decision Trees for Prognosis of Breast Cancer Survivability. In: Roddick, J.F., Li, J., Christen, P., Kennedy, P.J. (eds.) The Proceedings of the Seventh Australasian Data Mining Conference, Glenelg, South Australia, pp. 141–152 (2008)

    Google Scholar 

  5. Delen, D., Walker, G., Kadam, A.: Predicting breast cancer survivability: a comparison of three data mining methods. Artificial Intelligence in Medicine 34, 113–127 (2005)

    Article  Google Scholar 

  6. Cruz, J.A., Wishart, D.: Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Informatics 2, 59–78 (2006)

    Google Scholar 

  7. Maglogiannis, I., Zafiropoulos, E., Anagnostopoulos, I.: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers. Applied Intelligence 30, 24–36 (2009)

    Article  Google Scholar 

  8. Kim, J.H., Shin, H.: Breast Cancer Survivability Prediction using Labeled, Unlabeled, and Pseudo-Labeled Patient Data. Journal of the American Medical Informatics Association 20, 613–618 (2013)

    Article  MathSciNet  Google Scholar 

  9. Shin, H., Kim, D., Park, K., Ali, A.: Breast Cancer Survivability Prediction with Surveillance, Epidemiology, and End Results Database. In: The Proc. of Translational Biomedical Conference, Seoul, Korea (2011)

    Google Scholar 

  10. Dursun, D., Glenn, W., Amit, K.: Predicting breast cancer survivability: a comparison of three data mining methods. Artificial Intelligence in Medicine 34, 113–127 (2005)

    Article  Google Scholar 

  11. Matignon, R.: Data Mining Using SAS Enterprise Miner. John Wiley & Sons, Inc. (2007)

    Google Scholar 

  12. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138, 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  13. Shin, H., Hill, N.J., Lisewski, A.M., Park, J.S.: Graph sharpening. Expert Systems with Applications 37, 7870–7879 (2010)

    Article  Google Scholar 

  14. Shin, H., Lisewski, A.M., Lichtarge, O.: Graph sharpening plus graph integration: a synergy that improves protein functional classification. Bioinformatics 23, 3217–3224 (2007)

    Article  Google Scholar 

  15. SEER, Surveillance, Epidemiology and End Results program National Cancer Institute (2010), http://www.seer.cancer.gov (accessed July 11, 2011)

  16. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  17. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall/CRC, New York (1984)

    MATH  Google Scholar 

  18. Kass, G.V., Gordon, V.: An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics 29, 119–127 (1980)

    Article  Google Scholar 

  19. He, J., Carbonell, J., Liu, Y.: Graph-Based Semi-Supervised Learning as a Generative Model. In: Veloso, M.M. (ed.) The Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 2492–2497 (2007)

    Google Scholar 

  20. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press, Cambridge (2006)

    Book  Google Scholar 

  21. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and Semi-supervised Learning on Large Graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Guyon, I., Elisseeff, A.: Introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nam, Y., Shin, H. (2013). A Hybrid Cancer Prognosis System Based on Semi-Supervised Learning and Decision Trees. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42042-9_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42041-2

  • Online ISBN: 978-3-642-42042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics