Skip to main content

A Comparative Study on Image Retrieval Systems

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8228))

Included in the following conference series:

  • 4489 Accesses

Abstract

Search Engines such as Google is capable of processing user queries in a fast and efficient way. Though they are proven to be reliable, they are still incapable of handling complex queries. For example, Image Search Engines generally suffer from low accuracy when handling complex queries due to the lack of information available in an image. This paper presents the various image retrieval systems available currently, with in depth discussions on their operation and drawbacks. We also demonstrated the potential of using ontological technique in image retrieval systems, which has shown promising results in many research domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradshaw, B.: Semantic Based Image Retrieval: A Probabilistic Approach. In: Proceedings of the 8th Annual ACM International Conference on Multimedia, pp. 167–176. ACM (2000)

    Google Scholar 

  2. Chen, Y., Ma, W.Y., Zhang, H.J.: Detecting web page structure for adaptive viewing on small form factor devices. In: Proceedings of the 12th International Conference on World Wide Web, pp. 20–24 (2001)

    Google Scholar 

  3. Coelho, T., Calado, P., Souza, L., Ribeiro-Neto, B., Muntz, R.: Image retrieval using multiple evidence ranking. IEEE Transactions on Knowledge and Data Engineering 16(4), 408–417 (2004)

    Article  Google Scholar 

  4. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Dom, B., Gorkani, M., Hafner, J., et al.: Query by image and video content: the QBIC system. Computer 28(9), 23–32 (1995), doi:10.1109/2.410146

    Article  Google Scholar 

  5. Frankel, C., Swain, M., Athitsos, V.: Webseer: an image search engine for the world-wide web. Tech Rep. 94–14 (1996)

    Google Scholar 

  6. Gevers, T., Smeulders, W.: Color constant ratio gradients for image segmentation and similarity of texture objects. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. 1–18. IEEE (2001)

    Google Scholar 

  7. Gong, Z., Hou U, L., Cheang, C.W.: Web image indexing by using associated texts. Knowledge and Information Systems 10(2), 243–264 (2006)

    Google Scholar 

  8. Inoue, M.: On the need for annotation-based image retrieval. In: Proceedings of the Workshop on Information Retrieval in Context (IRiX), Sheffield, UK, pp. 44–46 (2004)

    Google Scholar 

  9. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval us-ing cross-media relevance models. In: Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 119–126 (2003)

    Google Scholar 

  10. Joshi, P.M., Liu, S.: Web document text and images extraction using DOM analysis and natural language processing. In: Proceedings of the 9th ACM Symposium on Document Engineering - DocEng 2009, p. 218. ACM Press, New York (2009)

    Google Scholar 

  11. Leong, C.W., Mihalcea, R., Hassan, S.: Text Mining For Automatic Image Tagging. In: COLING, pp. 647–655 (2010)

    Google Scholar 

  12. Leong, C.W., Mihalcea, R.: Explorations in Automatic Image Annotation using Textual Features. In: Linguistic Annotation Workshop, pp. 56–59 (2009)

    Google Scholar 

  13. Li, F.-F., Fergus, R., Perona, P.: Learning generative visual models from few train-ing examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)

    Article  Google Scholar 

  14. Lu, Y., Hu, C., Zhu, X., Zhang, H.J., Yang, Q.: A unified framework for semantics and feature based relevance feedback in image retrieval systems. In: Proceedings of the 8th Annual ACM International Conference on Multimedia, pp. 31–37. ACM (2000)

    Google Scholar 

  15. Meghini, C., Sebastiani, F., Straccia, U.: A model for multimedia information retrieval. Journal of the ACM (JACM) 48(5) (2001)

    Google Scholar 

  16. Mukherjea, S., Hirata, K.: Amore: A World Wide Web image retrieval engine. World Wide Web 2, 115–132 (1999)

    Article  Google Scholar 

  17. Rorissa, A.: User-generated descriptions of individual images versus labels of groups of images: A comparison using basic level theory. Information Processing & Management 44(5), 1741–1753 (2008)

    Article  Google Scholar 

  18. Sclaroff, S., Taycher, L., Cascia, M.L.: ImageRover: A content-based image browser for the World Wide Web. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 2–9 (1999)

    Google Scholar 

  19. Shen, H.T., Ooi, B.C., Tan, K.-L.: Giving meanings to WWW images. In: Proceedings of the 8th Annual ACM International Conference on Multimedia, pp. 39–47 (2000)

    Google Scholar 

  20. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  21. Smith, J.R., Chang, S.F.: An image and video search engine for the world-wide web. In: Symposium on Electronic Imaging Science and Technology-Storage & Retrieval for Image and Video Databases V (1997)

    Google Scholar 

  22. Wang, C., Zhang, L., Zhang, H.-J.: Learning to reduce the semantic gap in web im-age retrieval and annotation. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2008, p. 355. ACM Press, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, C.S., Hong, J.L. (2013). A Comparative Study on Image Retrieval Systems. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42051-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42051-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42050-4

  • Online ISBN: 978-3-642-42051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics