Skip to main content

Sparse Brain anatomical Network Based Classification of Schizophrenia Patients and Healthy Controls

  • Conference paper
  • 2379 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

Abstract

In this study, we tested whether the disturbed structural connectivity in whole brain cortex could be discriminating biomarker for schizophrenia. The anatomical fiber streamlines constructed on AAL template by diffusion tenor image were selected as potential features and a linear SVM pattern classifier was used to categorize the schizophrenia and healthy controls. We randomly divided the whole data into two groups, a training set which contained 32 patients and 25 controls and a test set had 31 patients and 24 controls. We compared two kinds of feature selection methods 1) Univariate t-test based filtering; 2) sparse regression based filtering. The sparse regression features correctly identified 97% cases in test dataset (96% sensitivity and 98% specificity), while the t-test significant impaired connectivity achieved 94% accuracy (92% sensitivity and 96% specificity). The sparse regression selected structural connectivities were consistent in 90% individuals 10 percent more than the t-test filtered features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neuroscience & Biobehavioral Reviews 36, 1140–1152 (2012)

    Article  Google Scholar 

  2. Ardekani, B.A., Tabesh, A., Sevy, S., Robinson, D.G., Bilder, R.M., et al.: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Human Brain Mapping 32, 1–9 (2011)

    Article  Google Scholar 

  3. Nieuwenhuis, M., van Haren, N.E., Hulshoff Pol, H.E., Cahn, W., Kahn, R.S., et al.: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 61, 606–612 (2012)

    Article  Google Scholar 

  4. Fornito, A., Zalesky, A., Pantelis, C., Bullmore, E.T.: Schizophrenia, neuroimaging and connectomics. Neuroimage (2012)

    Google Scholar 

  5. Zalesky, A., Fornito, A., Seal, M.L., Cocchi, L., Westin, C.-F., et al.: Disrupted axonal fiber connectivity in schizophrenia. Biological Psychiatry 69, 80–89 (2011)

    Article  Google Scholar 

  6. Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., et al.: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60, 59–70 (2012)

    Article  Google Scholar 

  7. First, M.B., Gibbon, M.: User’s guide for the structured clinical interview for DSM-IV axis I disorders: SCID-1 clinician version: American Psychiatric Pub. (1997)

    Google Scholar 

  8. Kay, S.R., Fiszbein, A., Opler, L.: The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261–276 (1997)

    Article  Google Scholar 

  9. Wang, R., Benner, T., Sorensen, A., Wedeen, V.: Diffusion toolkit: a software package for diffusion imaging data processing and tractography, 3720 (2007)

    Google Scholar 

  10. Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J.-R., et al.: Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134, 2912–2928 (2011)

    Article  Google Scholar 

  11. Ryali, S., Supekar, K., Abrams, D.A., Menon, V.: Sparse logistic regression for whole brain classification of fMRI data. NeuroImage 51, 752 (2010)

    Article  Google Scholar 

  12. Bi, J., Bennett, K., Embrechts, M., Breneman, C., Song, M.: Dimensionality reduction via sparse support vector machines. The Journal of Machine Learning Research 3, 1229–1243 (2003)

    MATH  Google Scholar 

  13. Hermundstad, A.M., Bassett, D.S., Brown, K.S., Aminoff, E.M., Clewett, D., et al.: Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences 110, 6169–6174 (2013)

    Article  Google Scholar 

  14. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, J., Wang, Y., Chen, H., Chen, H. (2013). Sparse Brain anatomical Network Based Classification of Schizophrenia Patients and Healthy Controls. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_102

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics