Skip to main content

Robust Principal Component Analysis for Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

Abstract

Recently, exactly recovering the intrinsic data structure from highly corrupted observations, which is known as robust principal component analysis (RPCA), has attracted great interest and found many applications in computer vision. Previous work has used RPCA to remove shadows and illuminations from face images. To go further, this paper introduces a method to use RPCA directly for recognition. And the inexact Augmented Lagrange Multiplier algorithm (ALM) is used to solve the RPCA problem. We actually utilize RPCA to reconstruct the testing sample from the training samples and compare the reconstructed one with the original one to do classification. Although the method is not very complicated, through experiments on some face databases we can see that it has better performance compared with some existing methods, especially under rigorous circumstances of occlusions and illuminations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  2. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 417–441 (1933)

    Article  Google Scholar 

  3. Jolliffe, I.: Principal Component Analysis. Springer (1986)

    Google Scholar 

  4. Ma, Y., Derksen, H., Hong, W., Wright, J.: Segmentation of multivariate mixed data via lossy data coding and compression. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1546–1562 (2007)

    Article  Google Scholar 

  5. Candes, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 11:1–11:37 (2011)

    Google Scholar 

  6. Lin, Z., Chen, M., Ma, Y.: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrix. Technical Report UILU-ENG-09-2215, UIUC, arXiv: 1009.5055 (2009)

    Google Scholar 

  7. Yin, W., Hale, E., Zhang, Y.: Fixed-point continuation for ℓ1-minimization: Methodology and convergence (2008) (preprint)

    Google Scholar 

  8. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1(1), 143–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. SIAM Journal on Optimization (2008) (submitted)

    Google Scholar 

  11. Nesterov, Y.: A method of solving a convex programming problem with convergence rateO(1/k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

    MATH  Google Scholar 

  12. Ganesh, A., Lin, Z., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast Algorithms for Recovering a Corrupted Low-Rank Matrix. In: International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (2009)

    Google Scholar 

  13. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Method. Academic Press (1982)

    Google Scholar 

  14. Lee, K.C., Ho, J., Driegman, D.: Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans. PAMI 27(5), 684–698 (2005)

    Article  Google Scholar 

  15. Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report #24 (1998)

    Google Scholar 

  16. Zhang, L., Yang, M., Feng, X.C.: Sparse representation or collaborative representation which helps face recognition? In: ICCV (2011)

    Google Scholar 

  17. Naseem, I., Togneri, R., Bennamoun, M.: Linear Regression for Face Recognition. IEEE Trans. PAMI 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  18. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. PAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Yang, J. (2013). Robust Principal Component Analysis for Recognition. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics