Skip to main content

Texture-Aware Fast Global Level Set Evolution

  • Conference paper
Intelligence Science and Big Data Engineering (IScIDE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

  • 2533 Accesses

Abstract

Due to its intrinsic advantages such as the ability to automatically handle complex shapes and topological changes, the level set method has been widely used in image segmentation. Nevertheless, in addition to be computational expensive, it has the limitation to very often lead to a local minimum because of the energy functional to be minimized is non-convex. In this work, we use the geometric active contours and the image thresholding frameworks to design a novel method for global image segmentation. The local lattice Boltzmann method is used to solve the level set equation. The proposed algorithm is therefore effective and highly parallelizable. Experimental results on satellite, natural and medical images demonstrate the effectiveness and the efficiency of the proposed method when implemented using an NVIDIA graphics processing units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balla-Arabé, S., Gao, X.: A Multiphase Entropy-Based Level Set Algorithm for MR Breast Image Segmentation Using Lattice Boltzmann Model. In: Yang, J., Fang, F., Sun, C. (eds.) IScIDE 2012. LNCS, vol. 7751, pp. 8–16. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Li, C., Xu, C., Gui, C., Fox, M.: Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  3. Hagan, A., Zhao, Y.: Parallel 3D image segmentation of large data sets on a GPU cluster. In: Bebis, G., et al. (eds.) ISVC 2009, Part II. LNCS, vol. 5876, pp. 960–969. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)

    Article  Google Scholar 

  5. Gao, X.-B., Wang, B., Tao, D., Li, X.: A relay level set method for automatic image segmentation. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics 41(2), 518–525 (2011)

    Article  Google Scholar 

  6. Balla-Arabé, S., Gao, X.-B., Wang, B.: GPU Accelerated Edge-Region Based Level Set Evolution Constrained By 2D Gray-scale Histogram. IEEE Transactions on Image Processing 22(7), 2688–2698 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Balla-Arabé, S., Gao, X.-B., Wang, B.: A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics 43(3), 910–920 (2013)

    Google Scholar 

  9. Zhao, Y.: Lattice Boltzmann based PDE solver on the GPU. The Visual Computer 24(5), 323–333 (2007)

    Article  Google Scholar 

  10. Bhatnager, P., Gross, E., Krook, M.: Phys. Rev. 94, 511 (1954)

    Article  Google Scholar 

  11. Buick, J., Greated, C.: Gravity in a lattice Boltzmann model. Phys. Rev. E 61(5), 5307–5320 (2000)

    Article  Google Scholar 

  12. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  13. Zeboudj, R.: Filtrage, seuillage automatique, contraste et contours: du pré-traitement à l’analyse d’images. PhD thesis, Saint Etienne University (1988)

    Google Scholar 

  14. Rosenberger, C., Chehdi, K.: “Genetic fusion: Application to multi-components image segmentation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2219–2222 (2000)

    Google Scholar 

  15. Balla-Arabé, S., Gao, X.-B.: Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm. Neurocomputing 93, 106–114 (2012)

    Article  Google Scholar 

  16. Balla-Arabé, S., Wang, B., Gao, X.-B.: Level set region based image segmentation using lattice Boltzmann method. In: Proc. 7th Int. Conf. Computational Intelligence and Security, Sanya, China, pp. 1159–1163 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balla-Arabé, S., Gao, X., Xu, L. (2013). Texture-Aware Fast Global Level Set Evolution. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics