Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 532))

Abstract

Clustering refers to the process of extracting maximally coherent groups from a set of objects using pairwise, or high-order, similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a predetermined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this chapter, we provide a brief review of our recent work which offers a radically different view of the problem. In contrast to the classical approach, in fact, we attempt to provide a meaningful formalization of the very notion of a cluster and we show that game theory offers an attractive and unexplored perspective that serves well our purpose. To this end, we formulate the clustering problem in terms of a non-cooperative “clustering game” and show that a natural notion of a cluster turns out to be equivalent to a classical (evolutionary) game theoretic equilibrium concept. We prove that the problem of finding the equilibria of our clustering game is equivalent to locally optimizing a polynomial function over the standard simplex, and we provide a discrete-time dynamics to perform this optimization, based on the Baum-Eagon inequality. Experiments on real-world data are presented which show the superiority of our approach over the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, M., Ben-David, S.: Measures of clustering quality: A working set of axioms for clustering. In: Advances in Neural Inform. Process. Syst. (2008)

    Google Scholar 

  2. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern. Anal. Machine Intell. 26, 1475–1490 (2004)

    Article  Google Scholar 

  3. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. Int. Conf. on Mach. Learning 148, 17–24 (2006)

    Google Scholar 

  4. Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., Belongie, S.: Beyond pairwise clustering. In: IEEE Conf. Computer Vision and Patt. Recogn., vol. 2, pp. 838–845 (2005)

    Google Scholar 

  5. Albarelli, A., Rodolà, E., Torsello, A.: A game-theoretic approach to fine surface registration without initial motion estimation. In: IEEE Conf. Computer Vision and Patt. Recogn. (2010)

    Google Scholar 

  6. Albarelli, A., Rodolà, E., Torsello, A.: Imposing semi-local geometric constraints for accurate correspondences selection in structure from motion: A game-theoretic perspective. Int. J. Comput. Vision 97(1), 36–53 (2012)

    Article  Google Scholar 

  7. Albarelli, A., Torsello, A., Rota Bulò, S., Pelillo, M.: Matching as a non-cooperative game. In: Int. Conf. Comp. Vision (2009)

    Google Scholar 

  8. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: IEEE Conf. Computer Vision and Patt. Recogn. (2008)

    Google Scholar 

  9. Banerjee, A., Krumpelman, C., Basu, S., Mooney, R.J., Ghosh, J.: Model-based overlapping clustering. In: Int. Conf. on Knowledge Discovery and Data Mining, pp. 532 – 537 (2005)

    Google Scholar 

  10. Barinova, O., Lempitsky, V., Kohli, P.: On detection of multiple object instances using hough transforms. In: IEEE Conf. Computer Vision and Patt. Recogn., pp. 2233–2240 (2010)

    Google Scholar 

  11. Baum, L.E., Eagon, J.A.: An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73, 360–363 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statistics 41, 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baum, L.E., Sell, G.R.: Growth transformations for functions on manifolds. Pacific J. Math. 27, 221–227 (1968)

    Article  MathSciNet  Google Scholar 

  14. Belhumeur, P., Kriegman, D.: What is the set of images of an object under all possible lighting conditions. Int. J. Comput. Vision 28(3), 245–260 (1998)

    Article  Google Scholar 

  15. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North-Holland, Amsterdam (1989)

    Google Scholar 

  16. Blakley, G.R.: Homogeneous nonnegative symmetric quadratic transformations. Bull. Amer. Math. Soc. 70, 712–715 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Broom, M., Cannings, C., Vickers, G.T.: Multi-player matrix games. Bull. Math. Biology 59(5), 931–952 (1997)

    Article  MATH  Google Scholar 

  18. Cesa Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006)

    Google Scholar 

  19. Crammer, K., Talukdar, P.P., Pereira, F.: A rate-distortion one-class model and its applications to clustering. In: Int. Conf. on Mach. Learning (2008)

    Google Scholar 

  20. Eco, U.: Kant and the Platypus: Essays on Language and Cognition. Harvest Books (2000)

    Google Scholar 

  21. Etessami, K., Lochbihler, A.: The computational complexity of evolutionarily stable strategies. Int. J. Game Theory 37(1), 93–113 (2007)

    Article  MathSciNet  Google Scholar 

  22. Fanelli, G., Gall, J., van Gool, L.: Hough transform-based mouth localization for audio-visual speech recognition. In: British Machine Vision Conf. (2009)

    Google Scholar 

  23. Faugeras, O.D., Berthod, M.: Improving consistency and reducing ambiguity in stochastic labeling: an optimization approach. IEEE Trans. Pattern. Anal. Machine Intell. 3, 412–424 (1981)

    Article  MATH  Google Scholar 

  24. Frankl, P., Rödl, V.: Hypergraphs do not jump. Combinatorica 4, 149–159 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

    Google Scholar 

  26. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: IEEE Conf. Computer Vision and Patt. Recogn., pp. 1022–1029 (2009)

    Google Scholar 

  27. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern. Anal. Machine Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  28. Gibson, D., Kleinberg, J.M., Raghavan, P.: Clustering categorical data: An approach based on dynamical systems. In: Proc. 24th Int. Conf. Very Large Data bases (VLDB), pp. 311–322 (1998)

    Google Scholar 

  29. Govindu, V.M.: A tensor decomposition for geometric grouping and segmentation. In: IEEE Conf. Computer Vision and Patt. Recogn., pp. 1150–1157 (2005)

    Google Scholar 

  30. Gupta, G., Ghosh, J.: Robust one-class clustering using hybrid global and local search. In: Int. Conf. on Mach. Learning (2005)

    Google Scholar 

  31. Guyon, I., von Luxburg, U., Williamson, R.C.: Clustering: Science or art? In: JMLR: Workshop and Conference Proceedings, vol. 27, pp. 65–79 (2012)

    Google Scholar 

  32. Hartigan, J.: Introduction. In: Arabie, P., Hubert, L.J., de Soete, G. (eds.) Clustering and Classification. World Scientific, River Edge (1996)

    Google Scholar 

  33. Heller, K., Ghahramani, Z.: A nonparametric bayesian approach to modeling overlapping clusters. In: Int. Conf. AI and Statistics (2007)

    Google Scholar 

  34. Herault, L., Horaud, R.: Figure-ground discrimination: a combinatorial optimization approach. IEEE Trans. Pattern. Anal. Machine Intell. 15(9), 899–914 (1993)

    Article  Google Scholar 

  35. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  36. Horn, K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Optical Soc. of America A 4, 629 (1987)

    Article  Google Scholar 

  37. Hsiao, P.C., Chang, L.W.: Image denoising with dominant sets by a coalitional game approach. IEEE Trans. Image Process. 22(2), 724–738 (2013)

    Article  MathSciNet  Google Scholar 

  38. Hu, T., Moerder, K.: Multiterminal flows in hypergraphs. In: Hu, T., Kuh, E.S. (eds.) VLSI Circuit Layout: Theory and Design, pp. 87–93 (1985)

    Google Scholar 

  39. Huang, Y., Liu, Q., Lv, F., Gong, Y., Metaxas, D.N.: Unsupervised image categorization by hypergraph partition. IEEE Trans. Pattern. Anal. Machine Intell. 33, 1266–1273 (2011)

    Article  Google Scholar 

  40. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Letters 31(8), 651–666 (2010)

    Article  Google Scholar 

  41. Jain, A.K., Dubes, R.C.: Algorithms for data clustering. Prentice-Hall (1988)

    Google Scholar 

  42. Jardine, N., Sibson, R.: The construction of hierarchic and non-hierarchic classifications. Computer J. 11, 177–184 (1968)

    Article  MATH  Google Scholar 

  43. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. VLSI Design 11(3), 285–300 (2000)

    Article  Google Scholar 

  44. Kleinberg, J.M.: An impossibility theorem for clustering. In: Advances in Neural Inform. Process. Syst. (2002)

    Google Scholar 

  45. Kontschieder, P., Rota Bulò, S., Donoser, M., Pelillo, M., Bischof, H.: Evolutionary hough games for coherent object detection. Comp. Vis. and Image Understanding 116, 1149–1158 (2012)

    Article  Google Scholar 

  46. Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. The University of Chicago Press (1987)

    Google Scholar 

  47. Lampert, C., Blaschko, M., Hofmann, T.: Beyond sliding windows: Object localization by efficient subwindow search. In: IEEE Conf. Computer Vision and Patt. Recogn. (2008)

    Google Scholar 

  48. LaSalle, J.P.: The Stability and Control of Discrete Processes. Springer, New York (1986)

    Book  MATH  Google Scholar 

  49. Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern. Anal. Machine Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  50. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vision 77(1-3), 259–289 (2008)

    Article  Google Scholar 

  51. Liu, H., Latecki, L.J., Yan, S.: Robust clustering as ensembles of affinity relations. In: Advances in Neural Inform. Process. Syst., vol. 23, pp. 1414–1422 (2010)

    Google Scholar 

  52. Luenberger, D.G.: Introduction to Dynamic Systems. Wiley, New York (1979)

    MATH  Google Scholar 

  53. Luenberger, D.G.: Linear and nonlinear programming. Addison Wesley, Reading (1984)

    MATH  Google Scholar 

  54. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  55. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  56. Mohammed, J.L., Hummel, R.A., Zucker, S.W.: A gradient projection algorithm for relaxation labeling methods. IEEE Trans. Pattern. Anal. Machine Intell. 5, 330–332 (1983)

    Article  Google Scholar 

  57. Nisan, N.: A note on the computational hardness of evolutionary stable strategies. In: Electr. Colloquium on Comp. Complexity (2006)

    Google Scholar 

  58. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.): Algorithmic Game Theory. Cambridge University Press (2007)

    Google Scholar 

  59. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 145–152 (2003)

    Google Scholar 

  60. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern. Anal. Machine Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  61. Pelillo, M.: The dynamics of nonlinear relaxation labeling processes. J. Math. Imag. and Vision 7(4), 309–323 (1997)

    Article  MathSciNet  Google Scholar 

  62. Pelillo, M., Torsello, A.: Payoff-monotonic game dynamics and the maximum clique problem. Neural Computation 18(5), 1215–1258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Perona, P., Freeman, W.T.: A factorization approach to grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998)

    Google Scholar 

  64. Rodolà, E., Bronstein, A.M., Albarelli, A., Bergamasco, F., Torsello, A.: A game-theoretic approach to deformable shape matching. In: IEEE Conf. Computer Vision and Patt. Recogn. (2012)

    Google Scholar 

  65. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. In: Advances in Neural Inform. Process. Syst., vol. 22, pp. 1571–1579 (2009)

    Google Scholar 

  66. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans. Pattern. Anal. Machine Intell. 35(6), 1312–1327 (2013)

    Article  Google Scholar 

  67. Rota Bulò, S., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: A fast evolutionary approach. Comp. Vis. and Image Understanding 115, 984–995 (2011)

    Article  Google Scholar 

  68. Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organization: eigenvalues and eigenvectors. Comp. Vis. and Image Understanding 71(1), 110–136 (1998)

    Article  Google Scholar 

  69. Shashua, A., Ullman, S.: Structural saliency: The detection of globally salient features using a locally connected network. In: Int. Conf. Comp. Vision (1988)

    Google Scholar 

  70. Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 595–608. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  71. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern. Anal. Machine Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  72. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: Int. Conf. Comp. Vision (2005)

    Google Scholar 

  73. Torsello, A., Rota Bulò, S., Pelillo, M.: Grouping with asymmetric affinities: A game-theoretic perspective. In: IEEE Conf. Computer Vision and Patt. Recogn., pp. 292–299 (2006)

    Google Scholar 

  74. Torsello, A., Rota Bulò, S., Pelillo, M.: Beyond partitions: Allowing overlapping groups in pairwise clustering. In: Int. Conf. Patt. Recogn. (2008)

    Google Scholar 

  75. Weibull, J.W.: Evolutionary game theory. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  76. Zadeh, R.B., Ben-David, S.: A uniqueness theorem for clustering. In: Uncertainty in Artif. Intell. (2009)

    Google Scholar 

  77. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, classification, embedding. In: Advances in Neural Inform. Process. Syst., vol. 19, pp. 1601–1608 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Pelillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelillo, M., Bulò, S.R. (2014). Clustering Games. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Registration and Recognition in Images and Videos. Studies in Computational Intelligence, vol 532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44907-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44907-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44906-2

  • Online ISBN: 978-3-642-44907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics