Skip to main content

Reconstructing Gene Regulatory Network Using Heterogeneous Biological Data

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8271))

  • 923 Accesses

Abstract

Gene regulatory network is a model of a network that describes the relationships among genes in a given condition. However, constructing gene regulatory network is a complicated task as high-throughput technologies generate large-scale of data compared to number of sample. In addition, the data involves a substantial amount of noise and false positive results that hinder the downstream analysis performance. To address these problems Bayesian network model has attracted the most attention. However, the key challenge in using Bayesian network to model GRN is related to its learning structure. Bayesian network structure learning is NP-hard and computationally complex. Therefore, this research aims to address the issue related to Bayesian network structure learning by proposing a low-order conditional independence method. In addition we revised the gene regulatory relationships by integrating biological heterogeneous dataset to extract transcription factors for regulator and target genes. The empirical results indicate that proposed method works better with biological knowledge processing with a precision of 83.3% in comparison to a network that rely on microarray only, which achieved correctness of 80.85%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yavari, F., Towhidkhah, F., Gharibzadeh, S.: Gene regulatory network modeling using Bayesian networks and cross correlation. Biomedical Engineering Conference, CIBEC, Cairo (2008)

    Google Scholar 

  2. Gevaert, O., Van Vooren, S., Moor, B.D.: A framework for elucidating regulatory networks based on prior information and expression data. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 240–248. Springer, Heidelberg (1996)

    Google Scholar 

  3. Huang, Z., Li, J., Su, H., Watts, G.S., Chen, H.: Large-scale regulatory network analysis from microarray data: Modified Bayesian network learning and association rule mining. Decision Support Systems 43, 1207–1225 (2007)

    Article  Google Scholar 

  4. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7(3), 601–620 (2000)

    Article  Google Scholar 

  5. Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)

    Article  Google Scholar 

  6. Ahmad, F.K., Deris, S., Othman, N.H.: The Inference of Breast Cancer Metastasis through Gene Regulatory Networks. Journal of Biomedical Informatics (JBI) 45(2), 350–362 (2012)

    Article  Google Scholar 

  7. Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al.: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the National Academy of Sciences of the United States of America 101(25), 9309–9314 (2004)

    Article  Google Scholar 

  8. Zhang, Y., Zha, H., Wang, J.Z., Chu, C.H.: Gene co-regulation vs. co-expression: The Pennsylvania State University, University Park, PA (2004)

    Google Scholar 

  9. Yeung, K.Y., Medvedovic, M., Bumgarner, R.E.: From co-expression to co-regulation: how many microarray experiments do we need? Genome Biology 5, R48 (2004)

    Google Scholar 

  10. Zhao, W., Serpedin, E., Dougherty, E.R.: Recovering genetic regulatory networks from chromatin immunoprecipitation and steady-state microarray data. Eurasip. J. Bioinform. Syst. Biol. (2008)

    Google Scholar 

  11. Kaleta, C., Göhler, A., Schuster, S., Jahreis, K., Guthke, R., Nikolajewa, S.: Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis. BMC Systems Biology 4(116) (2010)

    Google Scholar 

  12. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers Inc., Francisco (1988)

    Google Scholar 

  13. Wille, A., Buhlmann, P.: Low-order conditional independence graphs for inferring genetic networks. Statistical Applications in Genetics and Molecular Biology 4(32) (2006)

    Google Scholar 

  14. van’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A.M., Mao, M., Peterse, H.L., van de Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Google Scholar 

  15. Mi, Z., Guo, H., Wai, P.Y., Gao, C., Wei, J., Kuo, P.C.: Differential Osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior*. Journal of Biological Chemistry 279(45), 46659–46667 (2004)

    Article  Google Scholar 

  16. Kato, T., Katabami, K., Takatsuki, H., Han, S.A., Takeuchi, K., Irimura, T., et al.: Characterization of the promoter for the mouse a3 integrin gene Involvement of the Ets-family of transcription factors in the promoter activity. Eur. J. Biochem. 269, 4524–4532 (2002)

    Article  Google Scholar 

  17. Fang, S.H., Chen, Y., Weigel, R.J.: GATA-3 as a marker of hormone response in breast cancer. Journal of Surgical Research 157(2), 290–295 (2009)

    Article  Google Scholar 

  18. Xiao, X., Li, B., Mitton, B., Ikeda, A., Sakamoto, K.: Targeting CREB for cancer therapy: friend or foe. Curr. Cancer Drug Targets 10(4), 384–391 (2010)

    Article  Google Scholar 

  19. Gordon, S., Akopyan, G., Garban, H., Bonavida, B.: Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25, 1125–1142 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kabir Ahmad, F., Yusoff, N. (2013). Reconstructing Gene Regulatory Network Using Heterogeneous Biological Data. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2013. Lecture Notes in Computer Science(), vol 8271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44949-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44949-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44948-2

  • Online ISBN: 978-3-642-44949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics