Skip to main content

Relational Change Pattern Mining Based on Modularity Difference

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8271))

Abstract

This paper is concerned with a problem of detecting relational changes. Many kinds of graph data including social networks are increasing nowadays. In such a graph, the relationships among vertices are changing day by day. Therefore, it would be worth investigating a data mining method for detecting significant patterns informing us about what changes. We present in this paper a general framework for detecting relational changes over two graphs to be contrasted. Our target pattern with relational change is defined as a set of vertices common in both graphs in which the vertices are almost disconnected in one graph, while densely connected in the other. We formalize such a target pattern based on the notions of modularity and k-plex. A depth-first algorithm for the mining task is designed as an extension of k-plex enumerators with some pruning mechanisms. Our experimental results show usefulness of the proposed method for two pairs of graphs representing actual reply-communications among Twitter users and word co-occurrence relations in Japanese news articles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tomita, E., Tanaka, A., Takahashi, H.: The Worst-Case Time Complexity for Generating All Maximal Cliques and Computational Experiments. Theoretical Computer Science 363(1), 28–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dilkina, B., Gomes, C.P.: Solving Connected Subgraph Problems in Wildlife Conservation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 102–116. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Li, A., Haraguchi, M., Okubo, Y.: Contrasting Correlations by an Efficient Double-Clique Condition. In: Perner, P. (ed.) MLDM 2011. LNCS (LNAI), vol. 6871, pp. 469–483. Springer, Heidelberg (2011)

    Google Scholar 

  4. Terlecki, P., Walczak, K.: Efficient Discovery of Top-K Minimal Jumping Emerging Patterns. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 438–447. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bay, S.D., Pazzani, M.J.: Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery 5(3), 213–246 (2001)

    Article  MATH  Google Scholar 

  6. Newman, M.E.J.: Finding Community Structure in Networks Using the Eigenvectors of Matrices. Physical Review E 74(3), 36104 (2006)

    Article  Google Scholar 

  7. Seidman, S.B., Foster, B.L.: A Graph Theoretic Generalization of the Clique Concept. Journal of Mathematical Sociology 6(1), 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, B., Pei, X.: A Parallel Algorithm for Enumerating All the Maximal k-Plexes. In: Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4819, pp. 476–483. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  10. Li, A., Haraguchi, M., Okubo, Y., Tomita, E.: Finding What Changes for Two Graphs Constructed from Different Time Intervals. In: The 2012 IIAI International Conference on Advanced Applied Informatics, pp. 48–53. CPS, California (2012)

    Chapter  Google Scholar 

  11. Okubo, Y., Haraguchi, M., Tomita, E.: Structural Change Pattern Mining Based on Constrained Maximal k-Plex Search. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS, vol. 7569, pp. 284–298. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okubo, Y., Haraguchi, M., Tomita, E. (2013). Relational Change Pattern Mining Based on Modularity Difference. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2013. Lecture Notes in Computer Science(), vol 8271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44949-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44949-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44948-2

  • Online ISBN: 978-3-642-44949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics