Skip to main content

Ground Truth for Evaluating Time of Flight Imaging

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8200))

Abstract

In this work, we systematically analyze how good ground truth (GT) datasets for evaluating methods based on Time-of-Flight (ToF) imaging data should look like. Starting from a high level characterization of the application domains and requirements they typically have, we characterize how good datasets should look like and discuss how algorithms can be evaluated using them. Furthermore, we discuss the two different ways of obtaining ground truth data: By measurement and by simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boehler, W., Vicent, M.B., Marbs, A.: Investigating laser scanner accuracy. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34(Part 5), 696–701 (2003)

    Google Scholar 

  2. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Computer Vision and Pattern Recognition (CVPR), Providence, USA (June 2012)

    Google Scholar 

  3. Reynolds, M., Doboš, J., Peel, L., Weyrich, T., Brostow, G.J.: Capturing time-of-flight data with confidence. In: CVPR (2011)

    Google Scholar 

  4. Clark, J., Robson, S.: Accuracy of measurements made with a cyrax 2500 laser scanner against surfaces of known colour. Survey Review 37(294), 626–638 (2004)

    Article  MATH  Google Scholar 

  5. Soudarissanane, S., Lindenbergh, R., Menenti, M., Teunissen, P.: Incidence angle influence on the quality of terrestrial laser scanning points. In: ISPRS Workshop Laserscanning (2009)

    Google Scholar 

  6. Lichti, D.D.: Error modelling, calibration and analysis of an am–cw terrestrial laser scanner system. ISPRS Journal of Photogrammetry and Remote Sensing 61(5), 307–324 (2007)

    Article  Google Scholar 

  7. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, vol. 7, pp. 127–136 (2011)

    Google Scholar 

  8. Izadi, S., Newcombe, R.A., Kim, D., Hilliges, O., Molyneaux, D., Hodges, S., Kohli, P., Shotton, J., Davison, A.J., Fitzgibbon, A.: KinectFusion: Real-time dynamic 3D surface reconstruction and interaction. In: ACM SIGGRAPH 2011 Talks, p. 23. ACM (2011)

    Google Scholar 

  9. Khoshelham, K.: Accuracy analysis of kinect depth data. In: ISPRS Workshop Laser Scanning, vol. 38, p. 1 (2011)

    Google Scholar 

  10. Meister, S., Izadi, S., Kohli, P., Hämmerle, M., Rother, C., Kondermann, D.: When can we use kinectfusion for ground truth acquisition? In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Workshops & Tutorials (2012)

    Google Scholar 

  11. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, International Society for Optics and Photonics, pp. 586–606 (1992)

    Google Scholar 

  12. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  13. Maier-Hein, L., Schmidt, M., Franz, A.M., dos Santos, T.R., Seitel, A., Jähne, B., Fitzpatrick, J.M., Meinzer, H.P.: Accounting for anisotropic noise in fine registration of time-of-flight range data with high-resolution surface data. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 251–258. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Schmidt, M.: Analysis, Modeling and Dynamic Optimization of 3D Time-of-Flight Imaging Systems. PhD thesis, University of Heidelberg (20011)

    Google Scholar 

  15. Meister, S., Kondermann, D.: Real versus realistically rendered scenes for optical flow evaluation. In: Proceedings of 14th ITG Conference on Electronic Media Technology (2011)

    Google Scholar 

  16. Keller, M., Kolb, A.: Real-time simulation of time-of-flight sensors. J. Simulation Practice and Theory 17, 967–978 (2009)

    Article  Google Scholar 

  17. Research, L.: Optics software for layout and optimization (oslo), http://www.lambdares.com

  18. Zemax, R.: Zemax, optical design software, http://www.radiantzemax.com

  19. Schmidt, M., Jähne, B.: A physical model of time-of-flight 3D imaging systems, including suppression of ambient light. In: Kolb, A., Koch, R. (eds.) Dyn3D 2009. LNCS, vol. 5742, pp. 1–15. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Schmidt, M.: Analysis, Modeling and Dynamic Optimization of 3D Time-of-Flight Imaging Systems. PhD thesis, University of Heidelberg (2011)

    Google Scholar 

  21. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  22. Dal Mutto, C., Zanuttigh, P., Mattoccia, S., Cortelazzo, G.: Locally consistent toF and stereo data fusion. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 598–607. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Zhang, L., Curless, B., Seitz, S.M.: Spacetime stereo: Shape recovery for dynamic scenes. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–367. IEEE (2003)

    Google Scholar 

  24. Haeusler, R., Nair, R., Kondermann, D.: (Ensemble learning for confidence measures in stereo vision)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nair, R. et al. (2013). Ground Truth for Evaluating Time of Flight Imaging. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds) Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Lecture Notes in Computer Science, vol 8200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44964-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44964-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44963-5

  • Online ISBN: 978-3-642-44964-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics