Abstract
Parameter tuning is recognized today as a crucial ingredient when tackling an optimization problem. Several meta-optimization methods have been proposed to find the best parameter set for a given optimization algorithm and (set of) problem instances. When the objective of the optimization is some scalar quality of the solution given by the target algorithm, this quality is also used as the basis for the quality of parameter sets. But in the case of multi-objective optimization by aggregation, the set of solutions is given by several single-objective runs with different weights on the objectives, and it turns out that the hypervolume of the final population of each single-objective run might be a better indicator of the global performance of the aggregation method than the best fitness in its population. This paper discusses this issue on a case study in multi-objective temporal planning using the evolutionary planner DaE \(_{\text {YAHSP}}\) and the meta-optimizer ParamILS. The results clearly show how ParamILS makes a difference between both approaches, and demonstrate that indeed, in this context, using the hypervolume indicator as ParamILS target is the best choice. Other issues pertaining to parameter tuning in the proposed context are also discussed.
This work is being partially funded by the French National Research Agency under the research contract DESCARWIN (ANR-09-COSI-002).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
In the MultiZeno \(_{Risk}\) problem, not detailed here, the second objective is the risk: its maximal value ever encountered is to be minimized.
- 4.
- 5.
References
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)
Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter control in evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 19–46. Springer, Heidelberg (2007)
Yuan, Z., de Oca, M.A.M., Birattari, M., Stützle, T.: Modern continuous optimization algorithms for tuning real and integer algorithm parameters. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 203–214. Springer, Heidelberg (2010)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: Automated algorithm tuning using F-Races: recent developments. In: Caserta, M., et al. (eds.) Proceedings of MIC’09. University of Hamburg (2009)
Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework. In: Krasnogor, N., Lanzi, P.-L. (eds.) Proceedings of 13th ACM-GECCO, pp. 2019–2026 (2011)
Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: McKay, B., et al. (eds.) Proceedings of CEC’05, pp. 773–780. IEEE (2005)
Nannen, V., Eiben, A.: Relevance estimation and value calibration of evolutionary algorithm parameters. In: Veloso, M., et al. (eds.) Proceedings of IJCAI’07, pp. 975–980 (2007)
Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intel. Res. 36(1), 267–306 (2009)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice. Morgan Kaufmann, San Francisco (2004)
Bibaï, J., Savéant, P., Schoenauer, M., Vidal, V.: An evolutionary metaheuristic based on state decomposition for domain-independent satisficing planning. In: Brafman, R., et al. (eds.) Proceedings of 20th ICAPS, pp. 18–25. AAAI Press (2010)
Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Heidelberg (1999)
Jin, Y., Okabe, T., Sendhoff, B.: Adapting weighted aggregation for multiobjective evolution strategies. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001)
Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a new memetic scheme for domain-independent temporal planning. In: Gottlieb, J., Raidl, G. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)
Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Multi-objective AI planning: evaluating DAEYAHSP on a tunable benchmark. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., (eds.) Proceedings of EMO’2013 (2013, to appear)
Do, M., Kambhampati, S.: SAPA: a multi-objective metric temporal planner. J. Artif. Intell. Res. (JAIR) 20, 155–194 (2003)
Refanidis, I., Vlahavas, I.: Multiobjective heuristic state-space planning. Artif. Intell. 145(1), 1–32 (2003)
Gerevini, A., Saetti, A., Serina, I.: An approach to efficient planning with numerical fluents and multi-criteria plan quality. Artif. Intell. 172(8–9), 899–944 (2008)
Gerevini, A., Long, D.: Preferences and soft constraints in PDDL3. In: ICAPS Workshop on Planning with Preferences and Soft, Constraints, pp. 46–53 (2006)
Chen, Y., Wah, B., Hsu, C.: Temporal planning using subgoal partitioning and resolution in SGPlan. J. Artif. Intell. Res. 26(1), 323–369 (2006)
Edelkamp, S., Kissmann, P.: Optimal symbolic planning with action costs and preferences. In: Proceedings of 21st IJCAI, pp. 1690–1695 (2009)
Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 1, 27–120 (1971)
Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: On the benefit of sub-optimality within the Divide-and-Evolve scheme. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 23–34. Springer, Heidelberg (2010)
Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings of AIPS 2000, pp. 70–82 (2000)
Vidal, V.: A lookahead strategy for heuristic search planning. In: Proceedings of the 14th ICAPS, pp. 150–159. AAAI Press (2004)
Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Kluwer Academic, New York (2003)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Bibaï, J., Savéant, P., Schoenauer, M., Vidal, V.: On the generality of parameter tuning in evolutionary planning. In: Proceedings of 12th GECCO, pp. 241–248. ACM (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P. (2013). Quality Measures of Parameter Tuning for Aggregated Multi-Objective Temporal Planning. In: Nicosia, G., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2013. Lecture Notes in Computer Science(), vol 7997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44973-4_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-44973-4_38
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-44972-7
Online ISBN: 978-3-642-44973-4
eBook Packages: Computer ScienceComputer Science (R0)