Abstract
Automated algorithm configuration has been proven to be an effective approach for achieving improved performance of solvers for many computationally hard problems. Following our previous work, we consider the challenging situation where the kind of problem instances for which we desire optimised performance are too difficult to be used during the configuration process. In this work, we propose a novel combination of racing techniques with existing algorithm configurators to meet this challenge. We demonstrate that the resulting algorithm configuration protocol achieves better results than previous approaches and in many cases closely matches the bound on performance obtained using an oracle selector. An extended version of this paper can be found at www.cs.ubc.ca/labs/beta/Projects/Config4Scaling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18 (2002)
Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in networks: A hybrid approach. In: Perron, L., Trick, M. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 303–307. Springer, Heidelberg (2008)
Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. EJOR 126, 106–130 (2000)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
Reinelt, G.: TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95. Version visited in October 2011
Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 205–219. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Styles, J., Hoos, H.H. (2013). Using Racing to Automatically Configure Algorithms for Scaling Performance. In: Nicosia, G., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2013. Lecture Notes in Computer Science(), vol 7997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44973-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-44973-4_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-44972-7
Online ISBN: 978-3-642-44973-4
eBook Packages: Computer ScienceComputer Science (R0)