Abstract
In this work we study population size as a fraction of the true Pareto optimal set and analyze its effects on selection and performance scalability of a conventional multi-objective evolutionary algorithm applied to many-objective optimization of small MNK-landscapes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2008), pp. 2424–2431. IEEE Press (2008)
Aguirre, H., Tanaka, K.: Insights on properties of multi-objective MNK-landscapes. In: Proceedings of 2004 IEEE Congress on Evolutionary Computation, pp. 196–203. IEEE Service Center (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aguirre, H., Liefooghe, A., Verel, S., Tanaka, K. (2013). Effects of Population Size on Selection and Scalability in Evolutionary Many-Objective Optimization. In: Nicosia, G., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2013. Lecture Notes in Computer Science(), vol 7997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44973-4_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-44973-4_48
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-44972-7
Online ISBN: 978-3-642-44973-4
eBook Packages: Computer ScienceComputer Science (R0)