Skip to main content

Probabilistic Analysis of Long-Term Swarm Performance under Spatial Interferences

  • Conference paper
Theory and Practice of Natural Computing (TPNC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8273))

Included in the following conference series:

  • 623 Accesses

Abstract

Swarm robotics is a branch of collective robotics that outperforms many other systems due to its large number of robots. It allows for performing several tasks that are beyond the capability of a single or multi robot systems. Its global behaviour emerges from the local rules implemented on the level of its individual robots. Thus, estimating the obtained performance in a self-organized manner represents one of the main challenges, especially under complex dynamics like spatial interferences. In this paper, we exploit the central limit theorem (CLT) to analyse and estimate the swarm performance over long-term deadlines and under potential spatial interferences. The developed model is tested on the well-known foraging task, however, it can be generalized to be applied on any constrictive robotic task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.: Evaluating the dynamics of agent-environment interaction. Ph.D. thesis, University of Southern California (2001)

    Google Scholar 

  2. Goldberg, D., Matarić, M.J.: Reward maximization in a non-stationary mobile robot environment. In: Proceedings of the fourth International Conference on Autonomous Agents, AGENTS 2000, pp. 92–99. ACM, New York (2000)

    Chapter  Google Scholar 

  3. Jacod, J., Podolskij, M., Vetter, M.: Limit theorems for moving averages of discretized processes plus noise. The Annals of Statistics 38(3), 1478–1545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lein, A., Vaughan, R.T.: Adaptive multirobot bucket brigade foraging. In: Proceedings of the Eleventh International Conference on Artificial Life, ALife XI, pp. 337–342. MIT Press (2008)

    Google Scholar 

  5. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots 13(2), 127–141 (2002)

    Article  MATH  Google Scholar 

  6. Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Liu, W., Winfield, A.F.T., Sa, J.: Modelling swarm robotic systems: A case study in collective foraging. In: Towards Autonomous Robotic Systems (TAROS 2007), pp. 25–32. Aberystwyth (2007)

    Google Scholar 

  8. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: A case study in collaborative distributed manipulation. Int. Journal of Robotics Research 23, 415–436 (2004)

    Article  Google Scholar 

  9. Muniganti, P., Pujol, A.O.: A survey on mathematical models of swarm robotics. In: Workshop of Physical Agents (2010)

    Google Scholar 

  10. Ostergaard, E.H., Sukhatme, G.S., Matari, M.J.: Emergent bucket brigading: a simple mechanisms for improving performance in multi-robot constrained-space foraging tasks. In: Proceedings of the Fifth International Conference on Autonomous Agents, AGENTS 2001, pp. 29–30. ACM, New York (2001)

    Chapter  Google Scholar 

  11. Pinciroli, C., Trianni, V., OGrady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Caro, G., Ducatelle, F., Birattari, M., Gambardella, L., Dorigo, M.: Argos: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6, 271–295 (2012)

    Article  Google Scholar 

  12. Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Interference reduction through task partitioning in a robotic swarm or: dont you step on my blue suede shoes! (2009)

    Google Scholar 

  13. Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Task partitioning in swarms of robots: Reducing performance losses due to interference at shared resources. In: Cetto, J., Filipe, J., Ferrier, J.L. (eds.) Informatics in Control Automation and Robotics. LNEE, vol. 85, pp. 217–228. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Rice, J.A.: Mathematical Statistics and Data Analysis, 3rd edn. Duxbury Press (April 2001)

    Google Scholar 

  15. Shell, D.A., Mataric, M.J.: On foraging strategies for large-scale multi-robot systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2717–2723. IEEE (2006)

    Google Scholar 

  16. Vaughan, A.L.R.T.: Adaptive multi-robot bucket brigade foraging. Artificial Life 11, 337 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khaluf, Y., Birattari, M., Rammig, F. (2013). Probabilistic Analysis of Long-Term Swarm Performance under Spatial Interferences. In: Dediu, AH., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds) Theory and Practice of Natural Computing. TPNC 2013. Lecture Notes in Computer Science, vol 8273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45008-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45008-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45007-5

  • Online ISBN: 978-3-642-45008-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics